• Abstract

    This research investigates the key factors influencing the paddy rice harvest class in West Java, Indonesia, with a focus on understanding the interplay between traditional farming knowledge and modern technological solutions to support food security. It is recognize that rice is a staple for a large portion of the global population and critical to food security. This research explores how decision tree algorithms can help identify the most influential factors and support sustainable agricultural practices, especially in the context of small-scale rice farming in West Java, Indonesia. A dataset encompassing demographic variables (age, gender, household involvement), environmental conditions, and farming experience was analyzed using a decision tree model. The model’s performance was validated using cross-validation, achieving an average accuracy of 71.43%. In this study reveal that gender and household size of farmers showed moderate influence, reflecting the socio-economic dynamics of family-based farming. Meanwhile, other factors such as land ownership and paddy field type had a limited impact to the paddy productions. These findings highlight the need for structured knowledge transfer programs from experienced from experience farmers to younger farmers and suggest that combining traditional farming practices with technology farming tools might can improve rice yield outcomes. Furthermore, the research applies the CRISP-DM methodology to guide data analysis and ensure alignment with agricultural goals. The integration of data mining in agriculture not only improves understanding of paddy productivity but also supports adaptive strategies in response to climate variability and demographic shifts. This research provides practical implications for farmers, researchers, and policymakers seeking to implement targeted interventions that contribute to sustainable rice production and long-term food resilience in developing regions.

  • References

    1. Abdullah, N. A. N., Karim, Z. Z. A., Hussin, S. A. S., and Khairi, S. S. M. (2018). Determination of Perception and Adaptive Capacity towards Climate Change among Paddy Farmers in State of Kelantan, Malaysia. International Journal of Engineering & Technology, 7(4.1), Article 4.1. https://doi.org/10.14419/ijet.v7i4.1.28238
    2. AL-Falahi, A. H., Barry, S., Gebrechorkos, S. H., Spank, U., and Bernhofer, C. (2023). Potential of Traditional Adaptation Measures in Mitigating the Impact of Climate Change. Sustainability, 15(21), Article 21. https://doi.org/10.3390/su152115442
    3. Alfred, R., Obit, J. H., Chin, C. P.-Y., Haviluddin, H., and Lim, Y. (2021). Towards Paddy Rice Smart Farming: A Review on Big Data, Machine Learning, and Rice Production Tasks. IEEE Access, 9, 50358–50380. https://doi.org/10.1109/ACCESS.2021.3069449
    4. Arora, D., and Rada, C. (2020). Gender norms and intrahousehold allocation of labor in Mozambique: A CGE application to household and agricultural economics. Agricultural Economics, 51(2), 259–272. https://doi.org/10.1111/agec.12553
    5. Asli, W. M. F., and Rahman, S. (2023). CONCEPTUALISING RESILIENCE LIVELIHOOD STRATEGIES OF PADDY FARMERS TOWARDS MALAYSIA NATIONAL FOOD SECURITY AGENDA. PLANNING MALAYSIA, 21. https://doi.org/10.21837/pm.v21i28.1346
    6. Astuty, E., Sudirman, I. D., and Aryanto, R. (2024). Sustainable resilience strategy: Unleash the micro-businesses’s potential in the digitalization and sustainability era. Cogent Business & Management, 11(1), 2313672. https://doi.org/10.1080/23311975.2024.2313672
    7. Barbosa Júnior, M. R., Moreira, B. R. de A., Carreira, V. dos S., Brito Filho, A. L. de, Trentin, C., Souza, F. L. P. de, Tedesco, D., Setiyono, T., Flores, J. P., Ampatzidis, Y., Silva, R. P. da, and Shiratsuchi, L. S. (2024). Precision agriculture in the United States: A comprehensive meta-review inspiring further research, innovation, and adoption. Computers and Electronics in Agriculture, 221, 108993. https://doi.org/10.1016/j.compag.2024.108993
    8. Boughton, D., Goeb, J., Lambrecht, I., Headey, D., Takeshima, H., Mahrt, K., Masias, I., Goudet, S., Ragasa, C., Maredia, M. K., Minten, B., and Diao, X. (2021). Impacts of COVID-19 on agricultural production and food systems in late transforming Southeast Asia: The case of Myanmar. Agricultural Systems, 188, 103026. https://doi.org/10.1016/j.agsy.2020.103026
    9. BPS. (2023). Ringkasan Eksekutif Luas Panen dan Produksi Padi di Indonesia 2023 (No. 05100.2317). Badan Pusat Statistik.
    10. Carrasco-Torrontegui, A., Gallegos-Riofrío, C. A., Delgado-Espinoza, F., and Swanson, M. (2021). Climate Change, Food Sovereignty, and Ancestral Farming Technologies in the Andes. Current Developments in Nutrition, 5, 54–60. https://doi.org/10.1093/cdn/nzaa073
    11. Chongtham, I. R., Bergkvist, G., Watson, C. A., Sandström, E., Bengtsson, J., and Öborn, I. (2017). Factors influencing crop rotation strategies on organic farms with different time periods since conversion to organic production. Biological Agriculture & Horticulture, 33(1), 14–27. https://doi.org/10.1080/01448765.2016.1174884
    12. Christanto, H. J., Sutresno, S. A., Lim, R. J., Angkur, L. V. G., Charmelita, P., Valentina, V., and Dewi, C. (2023). Design and Development of the Mobile-Based Hydroponic Planting Machine Application MyHydro. Journal of Information Systems and Informatics, 5(4), Article 4. https://doi.org/10.51519/journalisi.v5i4.581
    13. Denashurya, N. I., Nurliza, Dolorosa, E., Kurniati, D., and Suswati, D. (2023). Overcoming Barriers to ISPO Certification: Analyzing the Drivers of Sustainable Agricultural Adoption among Farmers. Sustainability, 15(23), Article 23. https://doi.org/10.3390/su152316507
    14. Dissanayake, S. P., Gunaratne, L. H. P., Sivanathewer, T., and Ginigaddara, G. a. S. (2021). Impact of Adoption of Sustainable Agricultural Practices on Household Food Security in Small-scale Paddy-Cattle Farming Systems in Anuradhapura District, Sri Lanka. Sri Lankan Journal of Agriculture and Ecosystems, 3(2). https://doi.org/10.4038/sljae.v3i2.80
    15. El Bilali, H., Henri Nestor Bassole, I., Dambo, L., and Berjan, S. (2020). Climate Change and Food Security. The Journal “Agriculture and Forestry,” 66(3). https://doi.org/10.17707/AgricultForest.66.3.16
    16. Fahad, S., Adnan, M., Noor, M., Arif, M., Alam, M., Khan, I. A., Ullah, H., Wahid, F., Mian, I. A., Jamal, Y., Basir, A., Hassan, S., Saud, S., Amanullah, Riaz, M., Wu, C., Khan, M. A., and Wang, D. (2019). Major Constraints for Global Rice Production. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814332-2.00001-0
    17. FAO. (2017). The future of food and agriculture: Trends and challenges. Food and Agriculture Organization of the United Nations.
    18. Firdaus, R. B. R., Leong Tan, M., Rahmat, S. R., and Senevi Gunaratne, M. (2020). Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Social Sciences, 6(1), 1818373. https://doi.org/10.1080/23311886.2020.1818373
    19. Gebrehiwot, K. G. (2015). The impact of agricultural extension on households’ welfare in Ethiopia. International Journal of Social Economics, 42(8), 733–748. https://doi.org/10.1108/IJSE-05-2014-0088
    20. Habibi, L. N., Matsui, T., and Tanaka, T. S. T. (2024). Critical evaluation of the effects of a cross-validation strategy and machine learning optimization on the prediction accuracy and transferability of a soybean yield prediction model using UAV-based remote sensing. Journal of Agriculture and Food Research, 16, 101096. https://doi.org/10.1016/j.jafr.2024.101096
    21. Haile, D. F. (2016). Factors affecting women farmers’ participation in agricultural extension services for improving the production in rural district of Dendi West Shoa Zone, Ethiopia. INTERNATIONAL JOURNAL OF HOME SCIENCE EXTENSION & COMMUNICATION MANAGEMENT, 3(2), 59–71. https://doi.org/10.15740/HAS/IJHSECM/3.2/59-71
    22. Harsanto, B. (2021). Sustainability innovation in the agriculture sector in Indonesia: A review. E3S Web of Conferences, 306, 02022. https://doi.org/10.1051/e3sconf/202130602022
    23. Harsanto, B., Farras, J. I., and Firmansyah, E. A. (2024). Sustainability Innovation, Firm Competitiveness, Export Performance, and Sales Growth: A System Dynamics Approach. ASEAN Journal on Science and Technology for Development, 41(1). https://doi.org/10.61931/2224-9028.1562
    24. Kinkingninhoun Medagbe, F. M., Komatsu, S., Mujawamariya, G., and Saito, K. (2020). Men and Women in Rice Farming in Africa: A Cross-Country Investigation of Labor and Its Determinants. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.00117
    25. Kong, J., Yang, C., Wang, J., Wang, X., Zuo, M., Jin, X., and Lin, S. (2021). Deep‐Stacking Network Approach by Multisource Data Mining for Hazardous Risk Identification in IoT‐Based Intelligent Food Management Systems. Computational Intelligence and Neuroscience, 2021(1), 1194565. https://doi.org/10.1155/2021/1194565
    26. Lausch, A., Schmidt, A., and Tischendorf, L. (2015). Data mining and linked open data – New perspectives for data analysis in environmental research. Ecological Modelling, 295, 5–17. https://doi.org/10.1016/j.ecolmodel.2014.09.018
    27. Li, H., Zhou, X., Tang, M., and Guo, L. (2022). Impact of Population Aging and Renewable Energy Consumption on Agricultural Green Total Factor Productivity in Rural China: Evidence from Panel VAR Approach. Agriculture, 12(5), Article 5. https://doi.org/10.3390/agriculture12050715
    28. M., Sujatha., and C.d., Jaidhar. (2024). Machine learning-based approaches to enhance the soil fertility—A review. Expert Systems with Applications, 240, 122557. https://doi.org/10.1016/j.eswa.2023.122557
    29. Majumdar, J., Naraseeyappa, S., and Ankalaki, S. (2017). Analysis of agriculture data using data mining techniques: Application of big data. Journal of Big Data, 4(1), 20. https://doi.org/10.1186/s40537-017-0077-4
    30. Maraseni, T. N., Deo, R. C., Qu, J., Gentle, P., and Neupane, P. R. (2018). An International Comparison of Rice Consumption Behaviours and Greenhouse Gas Emissions From Rice Production. Journal of Cleaner Production, 172, 2288–2300. https://doi.org/10.1016/j.jclepro.2017.11.182
    31. Mohamed, Z., Terano, R., Shamsudin, M. N., and Abd Latif, I. (2016). Paddy Farmers’ Sustainability Practices in Granary Areas in Malaysia. Resources, 5(2), Article 2. https://doi.org/10.3390/resources5020017
    32. Mukandahiro, F., Kranjac-Berisavljevic, G., and Osei, E. A. (2024). Effect of Gender and Generation on the Adoption of Irrigation and Good Farming Practices in Bontanga and Golinga Irrigation Schemes in Northern Ghana. International Journal of Irrigation and Agricultural Development (IJIRAD), 8(1), Article 1. https://doi.org/10.47762/2024.964x.135
    33. Muthayya, S., Sugimoto, J. D., Montgomery, S., and Maberly, G. F. (2014). An Overview of Global Rice Production, Supply, Trade, and Consumption. Annals of the New York Academy of Sciences, 1324(1), 7–14. https://doi.org/10.1111/nyas.12540
    34. Nawaz, A., Rehman, A. U., Rehman, A., Ahmad, S., Siddique, K. H. M., and Farooq, M. (2022). Increasing Sustainability for Rice Production Systems. Journal of Cereal Science, 103, 103400. https://doi.org/10.1016/j.jcs.2021.103400
    35. Ngandee, S., Taparugssanagorn, A., Anutariya, C., and Kuwornu, J. K. M. (2021). Assessment of rice yield prediction models based on big data analytics for better supply chain decision-making in Thailand. International Journal of Value Chain Management, 12(3), 221–240. https://doi.org/10.1504/IJVCM.2021.118289
    36. Nodeh, M. J., Calp, M. H., and Şahin, İ. (2020). Analyzing and Processing of Supplier Database Based on the Cross-Industry Standard Process for Data Mining (CRISP-DM) Algorithm. In D. J. Hemanth. Springer International Publishing. https://doi.org/10.1007/978-3-030-36178-5_44
    37. Nuno, D. B., and Baker, M. M. (2021). The Determinants of Agricultural Crop Productivity among Smallholder Households in Haramaya Distinct, Eastern Ethiopia. Grassroots Journal of Natural Resources, 04(04), 146–153. https://doi.org/10.33002/nr2581.6853.040410
    38. Osei-Bryson, K.-M. (2004). Evaluation of decision trees: A multi-criteria approach. Computers & Operations Research, 31(11), 1933–1945. https://doi.org/10.1016/S0305-0548(03)00156-4
    39. Phinzi, K., Abriha, D., and Szabó, S. (2021). Classification Efficacy Using K-Fold Cross-Validation and Bootstrapping Resampling Techniques on the Example of Mapping Complex Gully Systems. Remote Sensing, 13(15), Article 15. https://doi.org/10.3390/rs13152980
    40. Prabhakaran, A., Chithra Lekshmi, K. S., and Janarthanan, G. (2021). Advancement of data mining methods for improvement of agricultural methods and productivity. Academic Press. https://doi.org/10.1016/B978-0-12-820601-0.00010-0
    41. Rahi, M., Ebrahimnejad, A., and Motameni, H. (2024). Evaluation of predicted fault tolerance based on C5.0 decision tree algorithm in irrigation system of paddy fields. International Journal of Intelligent Computing and Cybernetics, 17(2), 253–305. https://doi.org/10.1108/IJICC-07-2023-0174
    42. Santiago, J., and Buot, I. (2018). Conceptualizing the Socio-Ecological Resilience of the Chaya Rice Terraces, a Socio-Ecological Production Landscape in Mayoyao, Ifugao, Luzon Island, Philippines. Journal of Marine and Island Cultures, 7(1). https://doi.org/10.21463/jmic.2018.07.1.07
    43. Saruta, K., Hirai, Y., Tanaka, K., Inoue, E., Okayasu, T., and Mitsuoka, M. (2013). Predictive models for yield and protein content of brown rice using support vector machine. Computers and Electronics in Agriculture, 99, 93–100. https://doi.org/10.1016/j.compag.2013.09.003
    44. Schröer, C., Kruse, F., and Gómez, J. M. (2021). A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/j.procs.2021.01.199
    45. Sharda, R., Delen, D., and Turban, E. (2017). Business Intelligence, Analytics, and Data Science: A Managerial Perspective (4 edition). Pearson.
    46. Singh, N. K., Sunitha, N. H., Tripathi, G., Saikanth, D. R. K., Sharma, A., Jose, A. E., and Mary, M. V. K. J. (2023). Impact of Digital Technologies in Agricultural Extension. Asian Journal of Agricultural Extension, Economics & Sociology, 41(9), 963–970. https://doi.org/10.9734/ajaees/2023/v41i92127
    47. Son, N.-T., Chen, C.-F., Chen, C.-R., Guo, H.-Y., Cheng, Y.-S., Chen, S.-L., Lin, H.-S., and Chen, S.-H. (2020). Machine learning approaches for rice crop yield predictions using time-series satellite data in Taiwan. International Journal of Remote Sensing, 41(20), 7868–7888. https://doi.org/10.1080/01431161.2020.1766148
    48. Srisopaporn, S., Jourdain, D., Perret, S. R., and Shivakoti, G. (2015). Adoption and continued participation in a public Good Agricultural Practices program: The case of rice farmers in the Central Plains of Thailand. Technological Forecasting and Social Change, 96, 242–253. https://doi.org/10.1016/j.techfore.2015.03.016
    49. Statista. (2024). Total Global Rice Consumption. Statista. https://www.statista.com/statistics/255977/total-global-rice-consumption/
    50. Sudirman, I. D. (2023). Data-Driven Entrepreneur: Bisnis Berdaya Saing dengan Data Science dan RapidMiner. Salemba Empat.
    51. Tankou, C. M., Snoo, G. R. D., Persoon, G., and Iongh, H. H. D. (2017). Evaluation of smallholder farming systems in the Western Highlands of Cameroon. IOSR Journal of Engineering, 07(01), 01–11. https://doi.org/10.9790/30210701010111
    52. Varsha, M., Basavaraju, P., and P, P. K. M. (2024). Advanced Machine Learning Techniques for Disease Management in Paddy Crop for Sustainable Rice Production: Prediction of Rice Blast Disease Severity. In Natural Resource Management Issues in Human-Influenced Landscapes (pp. 64–87). IGI Global. https://doi.org/10.4018/978-1-6684-7051-0.ch004
    53. Witten, I. H., and Frank, E. (2002). Data mining: Practical machine learning tools and techniques with Java implementations. ACM SIGMOD Record, 31(1), 76–77. https://doi.org/10.1145/507338.507355

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Utama, I., Harsanto, B., Karmagatri, M., Iskandar, Y., Kasumaningrum, Y., & Rahmatillah, I. (2025). Data mining-based analysis of factors affecting paddy farming. Multidisciplinary Science Journal, 8(1), 2026048. https://doi.org/10.31893/multiscience.2026048
  • Article viewed - 130
  • PDF downloaded - 41