• Abstract

    Digital financial services (DFS) have gained significant importance since the Covid-19 outbreak, yet the elderly population remains understudied in this context. In China, the elderly population is rapidly growing, making it crucial to focus on enhancing their technology adoption behavior. This study attempts to fill the literature gap by considering the usage behavior of the elderly population toward digital financial services aged 65 and above, particularly in context of the Henan Province of China. This study employed a face-to-face survey method and primarily used PLS-SEM to analyze data collected from 382 individuals aged 65 and above in Henan, China. The findings suggest that behavioral intention significantly mediates the relationship between facilitating conditions, technology anxiety, perceived risk, perceived trust, and DFS usage behavior. Furthermore, the study identifies facilitating conditions, technology anxiety, and perceived risk as significant predictors. This research contributes to the literature by exploring the barriers and enablers of technology adoption among the elderly  China, offering insights on bridging the digital divide and promoting financial inclusiveness. Expands the understanding of technology adoption among elderly individuals in China. Identifies key barriers and driving factors influencing their behavior. Provides insights into bridging the digital divide and promoting financial inclusion.

  • References

    1. Agur, I., Martinez Peria, S., & Rochon, C. (2020). Digital Financial Services and the Pandemic: Opportunities and Risks for Emerging and Developing Economies, IMF COVID-19 Special Series. Goodwin-Groen.
    2. Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Algharabat, R. (2018). Examining factors influencing Jordanian customers’ intentions and adoption of internet banking: Extending UTAUT2 with risk. Journal of Retailing and Consumer Services, 40, 125–138. https://doi.org/10.1016/j.jretconser.2017.08.026
    3. Alkhwaldi, A. F., Alharasis, E. E., Shehadeh, M., Abu-AlSondos, I. A., Oudat, M. S., & Bani Atta, A. A. (2022). Toward an Understanding of FinTech Users’ Adoption: Intention and e-Loyalty Post-COVID-19 from a Developing Country Perspective. Sustainability, 14(19), 12616. https://doi.org/10.3390/su141912616
    4. Amirtha, R., Sivakumar, V. J., & Hwang, Y. (2020). Influence of Perceived Risk Dimensions on e-Shopping Behavioral Intention among Women—A Family Life Cycle Stage Perspective. Journal of Theoretical and Applied Electronic Commerce Research, 16(3), 320–355. https://doi.org/10.3390/jtaer16030022
    5. Anane, I., & Nie, F. (2022). Determinants factors of digital financial services adoption and usage level: Empirical evidence from Ghana. International Journal of Management Technology, 9(1), 26-47.
    6. Awotunde, J. B., Adeniyi, E. A., Ogundokun, R. O., & Ayo, F. E. (2021). Application of Big Data with Fintech in Financial Services (pp. 107–132). https://doi.org/10.1007/978-981-33-6137-9_3
    7. Bauer, R. A. (1960). Consumer behavior as risk taking. In American Marketing Association.
    8. Bhatt, K. (2022). Adoption of online streaming services: moderating role of personality traits. International Journal of Retail & Distribution Management, 50(4), 437–457. https://doi.org/10.1108/IJRDM-08-2020-0310
    9. Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., & Walker, K. (2020a). Purposive sampling: complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206
    10. Cao, X., Yu, L., Liu, Z., Gong, M., & Adeel, L. (2018). Understanding mobile payment users’ continuance intention: a trust transfer perspective. Internet Research, 28(2), 456–476. https://doi.org/10.1108/IntR-11-2016-0359
    11. Chaveesuk, S., Khalid, B., & Chaiyasoonthorn, W. (2021). Digital payment system innovations: A marketing perspective on intention and actual use in the retail sector. Innovative Marketing, 17(3), 109–123. https://doi.org/10.21511/im.17(3).2021.09
    12. Choi, Y., Han, S., & Lee, C. (2024). Exploring drivers of fintech adoption among elderly consumers. Technology in Society, 78, 102669.
    13. CNNIC. (2022). The 49th statistical report on China’s internet development. China internet Network Information Center. http://www.cnnic.cn/n4/2022/0401/c88-1131.html
    14. De Leon, M. V. (2019). Factors influencing behavioral intention to use mobile banking among retail banking clients. Jurnal Studi Komunikasi (Indonesian Journal of Communications Studies), 3(2), 118. https://doi.org/10.25139/jsk.v3i2.1469
    15. Deasy Safitri, Sofyan, J. F., Negoro, D. A., & Kusmayadi, A. (2024). Analisis Behavioral Intention Mobile Banking dengan Model UTAUT2. Innovative: Journal Of Social Science Research, 4(3), 571–587. https://doi.org/10.31004/innovative.v4i3.10417
    16. Dewi, C. K., Mohaidin, Z., & Murshid, M. A. (2019). Determinants of online purchase intention: a PLS-SEM approach: evidence from Indonesia. Journal of Asia Business Studies, 14(3), 281–306. https://doi.org/10.1108/JABS-03-2019-0086
    17. Dragano, N., & Lunau, T. (2020). Technostress at work and mental health: concepts and research results. Current Opinion in Psychiatry, 33(4), 407–413. https://doi.org/10.1097/YCO.0000000000000613
    18. Gadiman, N. S., Jaafar, N., & Lunyai, J. (2023). Investigating the Mediating Effect of Behavioral Intention to Use in the Relationships between Technology Acceptance Factors and Usage of Online Food Delivery Applications in Sarawak. International Journal of Academic Research in Business and Social Sciences, 13(7). https://doi.org/10.6007/IJARBSS/v13-i7/17283
    19. Garson, G.D. (2016) Partial Least Squares: Regression and Structural Equation Models. Statistical Associates Publishers, Asheboro.
    20. Hassan, Md. S., Islam, Md. A., Sobhani, F. A., Nasir, H., Mahmud, I., & Zahra, F. T. (2022). Drivers Influencing the Adoption Intention toward Mobile Fintech Services: A Study on the Emerging Bangladesh Market. Information, 13(7), 349. https://doi.org/10.3390/info13070349
    21. He, Z., Zhang, X., & Wan, G. (2020). Digital Finance, Digital Divide, and Multidimensional Poverty. Statistical Research, 37(10), 79-89. https://tjyj.stats.gov.cn/EN/10.19343/j.cnki.11-1302/c.2020.10.007.
    22. Hoffman, C. (1996). Persons With Chronic Conditions. JAMA, 276(18), 1473. https://doi.org/10.1001/jama.1996.03540180029029
    23. Hoque, R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by elderly individuals: An extension of the UTAUT model. International Journal of Medical Informatics, 101, 75–84. https://doi.org/10.1016/j.ijmedinf.2017.02.002
    24. Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. https://doi.org/10.1037/1082-989X.3.4.424
    25. Hua, X., & Huang, Y. (2021). Understanding China’s fintech sector: development, impacts and risks. The European Journal of Finance, 27(4–5), 321–333. https://doi.org/10.1080/1351847X.2020.1811131
    26. Jariyapan, P., Mattayaphutron, S., Gillani, S. N., & Shafique, O. (2022a). Factors Influencing the Behavioral Intention to Use Cryptocurrency in Emerging Economies During the COVID-19 Pandemic: Based on Technology Acceptance Model 3, Perceived Risk, and Financial Literacy. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.814087
    27. Jena, R. (2023). Factors impacting senior citizens’ adoption of e-banking post COVID-19 pandemic: An empirical study from India. Journal of Risk and Financial Management, 16(9), 380.
    28. Jena, R. K. (2020a). Measuring the impact of business management Student’s attitude toward entrepreneurship education on entrepreneurial intention: A case study. Computers in Human Behavior, 107, 106275. https://doi.org/10.1016/j.chb.2020.106275
    29. Jiao, J. (2019). An introduction to financial inclusion. China Financial Publishing House.
    30. Karyoto, E. V. A., Wiranti, Y. T., & Putera, M. I. A. (2024). Pengaruh behavioral intention terhadap use behavior pada penggunaan aplikasi Gojek. Teknika, 13(1), 109–119.
    31. Khan, W. A., & Abideen, Z. U. (2023). Effects of behavioral intention on usage behavior of digital wallet: the mediating role of perceived risk and moderating role of perceived service quality and perceived trust. Future Business Journal, 9(1), 73. https://doi.org/10.1186/s43093-023-00242-z
    32. Mariano, J., Marques, S., Ramos, M. R., Gerardo, F., Cunha, C. L. da, Girenko, A., Alexandersson, J., Stree, B., Lamanna, M., Lorenzatto, M., Mikkelsen, L. P., Bundgård-Jørgensen, U., Rêgo, S., & de Vries, H. (2022). Too old for technology? Stereotype threat and technology use by older adults. Behavior & Information Technology, 41(7), 1503–1514. https://doi.org/10.1080/0144929X.2021.1882577
    33. Meiranto, W., Farlyagiza, F., Faisal, F., Nur Afri Yuyetta, E., & Puspitasari, E. (2024). The mediating role of behavioral intention on factors influencing user behavior in the E-government state financial application system at the Indonesian Ministry of Finance. Cogent Business & Management, 11(1). https://doi.org/10.1080/23311975.2024.2373341
    34. Meng, F., Guo, X., Peng, Z., Ye, Q., & Lai, K.-H. (2022). Trust and elderly users’ continuance intention regarding mobile health services: the contingent role of health and technology anxieties. Information Technology & People, 35(1), 259–280. https://doi.org/10.1108/ITP-11-2019-0602
    35. Merdika, D., Chamidah, N., Oesman, Y. M., Kusuma Putra, A. H. P., Sule, E. T., & Kartini, D. (2019). Moderating the role of technology theory on the existence of consumer behavior in e-commerce. Journal of Distribution Science, 17(7), 15–25. https://doi.org/10.15722/jds.17.7.201907.15
    36. Moudud-Ul-Huq, S., Sultana Swarna, R., & Sultana, M. (2021). Elderly and middle-aged intention to use m-health services: an empirical evidence from a developing country. Journal of Enabling Technologies, 15(1), 23–39. https://doi.org/10.1108/JET-04-2020-0018
    37. Nur, T., & Panggabean, R. R. (2021). Factors Influencing the Adoption of Mobile Payment Method among Generation Z: the Extended UTAUT Approach. Journal of Accounting Research, Organization and Economics, 4(1), 14–28. https://doi.org/10.24815/jaroe.v4i1.19644
    38. Pavlov, G., Maydeu-Olivares, A., & Shi, D. (2021). Using the Standardized Root Mean Squared Residual (SRMR) to Assess Exact Fit in Structural Equation Models. Educational and Psychological Measurement, 81(1), 110–130. https://doi.org/10.1177/0013164420926231
    39. Qi, H., & Li, Z. (2019). Measurement and evaluation of financial inclusion in China. The Journal of Quantitative & Technical Economics, 36(5), 101–117. https://doi.org/10.13653/j.cnki.jqte.2019.05.006
    40. Rahman, M. R., & Rahman, Md. M. (2023). Impact of Digital Financial Services on Customers’ Choice of Financial Institutions: A Modified UTAUT Study in Bangladesh. International Journal of Safety and Security Engineering, 13(3), 409–421. https://doi.org/10.18280/ijsse.130304
    41. Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial Least Squares Structural Equation Modeling. In Handbook of Market Research (pp. 1–47). Springer International Publishing. https://doi.org/10.1007/978-3-319-05542-8_15-2
    42. Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill-building approach (7th ed.). Wiley & Sons.
    43. Shofawati, A. (2019). The Role of Digital Finance to Strengthen Financial Inclusion and the Growth of SME in Indonesia. KnE Social Sciences, 3(13), 389. https://doi.org/10.18502/kss.v3i13.4218
    44. Srivastava, R., Sahawneh, N. M., Inairat, M., Alzoubi, A. A., & Kota, S. (2024, February). Analyzing the Adoption of Digital Technology-Enabled E-Financial Services for Sustainable Development: A UTAUT2 Model Perspective. In 2024 2nd International Conference on Cyber Resilience (ICCR) (pp. 1-5). IEEE.
    45. Suryawan, T. G. A. W. K., & Santikasari, N. N. (2024). A Behavioral Analysis of Online Loan Application Adoption: The Roles of Ease of Use, Risk, and Trust in Rural Bali. JURNAL ILMU MANAJEMEN, 21(2), 85-100.
    46. Tian, Y., Chan, T. J., Suki, N. M., & Kasim, M. A. (2023). Moderating Role of Perceived Trust and Perceived Service Quality on Consumers’ Use Behavior of Alipay e-wallet System: The Perspectives of Technology Acceptance Model and Theory of Planned Behavior. Human Behavior and Emerging Technologies, 2023, 1–14. https://doi.org/10.1155/2023/5276406
    47. Tsai, T.-H., Lin, W.-Y., Chang, Y.-S., Chang, P.-C., & Lee, M.-Y. (2020). Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults. PLOS ONE, 15(1), e0227270. https://doi.org/10.1371/journal.pone.0227270
    48. Utomo, R. G., Yasirandi, R., & Suwastika, N. A. (2024). Adoption Dynamics of Digital Payments: An Urban Case Study on E-Money Using the Technology Acceptance Model. Jurnal Infotel, 16(3), 567-581.
    49. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
    50. Wu, J., Liu, L., & Huang, L. (2017). Consumer acceptance of mobile payment across time. Industrial Management & Data Systems, 117(8), 1761–1776. https://doi.org/10.1108/IMDS-08-2016-0312
    51. Yuspita, R., Pebruary, S., & Kamala, A. Z. H. (2019). The society’s perceptions on the use of fintech services in sharia financial institutions. Jurnal Ekonomi & Keuangan Islam, 5(2), 87–92. https://doi.org/10.20885/jeki.vol5.iss2.art6
    52. Zhang, X., Yang, T., Wang, C., & Wan, G. (2020). The development of digital finance and household consumption growth: Theory and practice in China. Management World, 36(11), 48–63. https://doi.org/10.3969/j.issn.1002-5502.2020.11.005
    53. Zheng, Y., Fan, H., Zheng, Z., & Gao, W. (2023). Henan social governance development report (2022). S. S. A. Press. https://www.pishu.com.cn/skwx_ps/bookdetail?SiteID=14&ID=14125347

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Zhang, Q., Bakar, J. A., & Murugiah, L. (2025). Unveiling the path to adoption: Behavioral intention’s role in digital financial services for elderly in Henan, China. Multidisciplinary Science Journal, 7(9), 2025506. https://doi.org/10.31893/multiscience.2025506
  • Article viewed - 100
  • PDF downloaded - 90