• Abstract

    In today’s business intelligence landscape, the integration of artificial intelligence (AI) has become a transformative catalyst, providing real-time insights and decision-making capabilities that were previously unattainable. This advanced technology has transformed the manner in which businesses analyze data, extract insights, and make informed decisions. Through the application of business intelligence, organizations can uncover latent patterns, pinpoint opportunities for growth and improvement, optimize operational processes, and ultimately make evidence-based decisions that boost their success. Artificial intelligence is reshaping the field of business intelligence by driving advancements in areas such as automated data analysis, which enables swift and accurate extraction of insights; demand forecasting, which supports proactive strategic planning; and dynamic pricing, which facilitates real-time adjustments based on market conditions. Additionally, AI improves anomaly detection by accurately identifying irregularities and supports personalized customer experiences to enhance engagement. However, ethical issues such as data usage and algorithmic bias remain significant challenges. These advancements help businesses optimize processes, make agile decisions, and enhance customer satisfaction. This article presents a qualitative study conducted in Morocco's manufacturing sector employing semistructured interviews with managers who are using AI-powered BI tools in their operations. The majority of respondents highlighted that their satisfaction depends on the technical quality of the system, service quality, reliability of information, and adherence to ethical standards. The participants emphasized the importance of these factors in increasing the usage frequency of AI-powered BI tools. Additionally, the respondents indicated that their performance is influenced by their satisfaction and increased utilization of these tools, which in turn significantly enhances their productivity and organizational performance.

  • References

    1. Ajalkar, D. A., Waheed, S. A., Matheen, M. A., Gupta, P., & Shinde, J. P. (2024). Futuristic business intelligence framework for start-ups. Journal of Autonomous Intelligence, 7(2). https://ir.uitm.edu.my/id/eprint/29616/
    2. Al Naqbi, S. H. (2024). A mixed-method approach to post-implementation success of technology performance in UAE universities: Assessing DeLone and McLean IS success model. SAGE Open, 14(2), 21582440241240827. https://doi.org/10.1177/21582440241240827
    3. Aldholay, A., Isaac, O., Abdullah, Z., Abdulsalam, R., & Al-Shibami, A. H. (2018). An extension of Delone and McLean IS success model with self-efficacy: Online learning usage in Yemen. The International Journal of Information and Learning Technology, 35(4), 285–304. https://doi.org/10.1108/IJILT-11-2017-0116
    4. Awang Kader, M. A. R., & Ali, R. (2012). Evaluating the provision of information system performance in the public education sector: An extension of DeLone and McLean model. Gading Journal for the Social Sciences, 16(1), 1–22.
    5. Azim, A. W., Bazzi, A., Fatima, M., Shubair, R., & Chafii, M. (2023). Dual-mode time domain multiplexed chirp spread spectrum. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2023.10183362
    6. Ballantine, J., Bonner, M., Levy, M., Martin, A., Munro, I., & Powell, P. L. (1996). The 3-D model of information systems success: The search for the dependent variable continues. Information Resources Management Journal (IRMJ), 9(4), 5–15. https://doi.org/10.4018/IRMJ.1996100101
    7. Baroudi, J. J., & Orlikowski, W. J. (1988). A short-form measure of user information satisfaction: A psychometric evaluation and notes on use. Journal of Management Information Systems, 4(4), 44–59. https://doi.org/10.1080/07421222.1988.11517804
    8. Basole, R. C. (2023). Visual analytics for innovation and R&D intelligence. Research-Technology Management, 66(3), 38–50. https://doi.org/10.1080/08956308.2023.2186072
    9. Basole, R. C., Park, H., & Seuss, C. D. (2024). Complex business ecosystem intelligence using AI-powered visual analytics. Decision Support Systems, 178, 114133. https://doi.org/10.1016/j.dss.2023.114133
    10. Beil, M., Proft, I., Van Heerden, D., Sviri, S., & Van Heerden, P. V. (2019). Ethical considerations about artificial intelligence for prognostication in intensive care. Intensive Care Medicine Experimental, 7(1), 70. https://doi.org/10.1186/s40635-019-0286-6
    11. Benabed, A., & Boeru, A.-C. (2023). Globalization beyond business sustainability, energy and the economy of the future. Proceedings of the International Conference on Business Excellence, 17(1), 1569–1583. https://doi.org/10.2478/picbe-2023-0141
    12. Bharadiya, J. (2023). Convolutional neural networks for image classification. International Journal of Innovative Science and Research Technology, 8(5), 673–677. https://ijisrt.com/convolutional-neural-networks-for-image-classification.
    13. Bharadiya, J. P. (2023). Machine learning and AI in business intelligence: Trends and opportunities. International Journal of Computer (IJC), 48(1), 123–134.
    14. Brahmantyo, K. F., Paguna, B., & Prawati, L. D. (2023). Measuring the success of corporate annual tax online reporting: Applying the Delone & McLean Information System Success Model. E3S Web of Conferences, 426, 01094. https://doi.org/10.1051/e3sconf/202342601094
    15. Chan, D. W. M., Sarvari, H., Golestanizadeh, M., & Saka, A. (2024). Evaluating the impact of organizational learning on organizational performance through organizational innovation as a mediating variable: Evidence from Iranian construction companies. International Journal of Construction Management, 24(9), 921–934. https://doi.org/10.1080/15623599.2023.2239486
    16. Chen, L., & Nath, R. (2018). Business analytics maturity of firms: An examination of the relationships between managerial perception of IT, business analytics maturity and success. Information Systems Management, 35(1), 62–77. https://doi.org/10.1080/10580530.2017.1416948
    17. Christie, M., & De Graaff, E. (2017). The philosophical and pedagogical underpinnings of active learning in engineering education. European Journal of Engineering Education, 42(1), 5–16. https://doi.org/10.1080/03043797.2016.1254160
    18. Li, C., Chen, Y., & Shang, Y. (2022). A review of industrial big data for decision making in intelligent manufacturing. Engineering Science and Technology, an International Journal, 29, 101021. https://doi.org/10.1016/j.jestch.2021.06.001
    19. Coates, N. (1989). The globalization of the motor vehicle manufacturing industry. Planning Review, 17(1), 34–39. https://doi.org/10.1108/eb054246
    20. Colace, F., De Santo, M., Lombardi, M., Mercorio, F., Mezzanzanica, M., & Pascale, F. (2019). Towards labour market intelligence through topic modelling. Proceedings of the 52nd Hawaii International Conference on System Sciences. https://scholarspace.manoa.hawaii.edu/handle/10125/59962
    21. D’Ambra, J., Wilson, C. S., & Akter, S. (2013). Application of the task-technology fit model to structure and evaluate the adoption of E-books by academics. Journal of the American Society for Information Science and Technology, 64(1), 48–64. https://doi.org/10.1002/asi.22757
    22. DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60–95. https://doi.org/10.1287/isre.3.1.60
    23. DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748
    24. Doll, W. J., & Torkzadeh, G. (1988). The measurement of end-user computing satisfaction. MIS Quarterly, 12(2), 259–274. https://doi.org/10.2307/248851
    25. Ernawati, M., Hermaliani, E. H., & Sulistyowati, D. N. (2021). Penerapan DeLone and McLean model untuk mengukur kesuksesan aplikasi akademik mahasiswa berbasis mobile. IKRA-ITH Informatika: Jurnal Komputer dan Informatika, 5(1), 58–67. https://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/1234
    26. Gatian, A. W. (1994). Is user satisfaction a valid measure of system effectiveness? Information & Management, 26(3), 119–131. https://doi.org/10.1016/0378-7206(94)90036-1
    27. Gupta, K., & Jiwani, N. (2021). A systematic overview of fundamentals and methods of business intelligence. International Journal of Sustainable Development in Computing Science, 3(3), 31–46. https://ijsdcs.com/index.php/ijsdcs/article/view/118?utm
    28. Halawi, L. A., McCarthy, R. V., & Aronson, J. E. (2008). An empirical investigation of knowledge management systems’ success. Journal of Computer Information Systems, 48(2), 121–135. https://doi.org/10.1080/08874417.2008.11646014
    29. Hmoud, H., Al-Adwan, A. S., Horani, O., Yaseen, H., & Zoubi, J. Z. A. (2023). Factors influencing business intelligence adoption by higher education institutions. Journal of Open Innovation: Technology, Market, and Complexity, 9(3), 100111. https://doi.org/10.1016/j.joitmc.2023.100111
    30. Hou, C.-K. (2012). Examining the effect of user satisfaction on system usage and individual performance with business intelligence systems: An empirical study of Taiwan’s electronics industry. International Journal of Information Management, 32(6), 560–573. https://doi.org/10.1016/j.ijinfomgt.2012.03.001
    31. Howson, C. (2007). Successful business intelligence: Secrets to making BI a killer app. McGraw-Hill Osborne Media. https://dl.acm.org/doi/10.5555/2829280
    32. Hu, P.-H. (2003). Evaluating telemedicine systems success: A revised model. 36th Annual Hawaii International Conference on System Sciences, 8-pp. https://doi.org/10.1109/HICSS.2003.1174379
    33. Hussein, R., Shahriza Abdul Karim, N., & Hasan Selamat, M. (2007). The impact of technological factors on information systems success in the electronic-government context. Business Process Management Journal, 13(5), 613–627. https://doi.org/10.1108/14637150710823110
    34. Igbaria, M., & Tan, M. (1997). The consequences of information technology acceptance on subsequent individual performance. Information & Management, 32(3), 113–121. https://doi.org/10.1016/S0378-7206(96)00070-3
    35. Ikumapayi, O. M., Oyinbo, S. T., Akinlabi, E. T., & Madushele, N. (2020). Overview of recent advancement in globalization and outsourcing initiatives in manufacturing systems. Materials Today: Proceedings, 26, 1532–1539. https://doi.org/10.1016/j.matpr.2020.02.315
    36. Ilham Najib, & Haddad, E. A. (2024). The automotive sector in Morocco: An input-output structural decomposition analysis. Policy Center for the New South, 38. https://www.policycenter.ma/index.php/publications/automotive-sector-morocco-input-output-structural-decomposition-analysis
    37. Isaac, O., Abdullah, Z., Ramayah, T., Mutahar, A. M., & Alrajawy, I. (2017). Towards a better understanding of internet technology usage by Yemeni employees in the public sector: An extension of the task-technology fit (TTF) model. Research Journal of Applied Sciences, 12(2), 205–223. https://doi.org/10.1108/IJILT-11-2016-0051
    38. Isaac, O., Abdullah, Z., Ramayah, T., & Mutahar Ahmed, M. (2017). Examining the relationship between overall quality, user satisfaction and internet usage: An integrated individual, technological, organizational and social perspective. Asian Journal of Information Technology, 16(1), 100–124. https://docsdrive.com/pdfs/medwelljournals/ajit/2017/100-124.pdf
    39. Ives, B., Olson, M. H., & Baroudi, J. J. (1983). The measurement of user information satisfaction. Communications of the ACM, 26(10), 785–793. https://doi.org/10.1145/358413.358430
    40. Jain, S., & Jain, R. (2019). Role of artificial intelligence in higher education—An empirical investigation. IJRAR-International Journal of Research and Analytical Reviews, 6(2), 144–150. https://ijrar.com/upload_issue/ijrar_issue_20544069.pdf
    41. Kale, D., & Tüzün, İ. K. (2023). Measuring the impact of the HR information system on performance in the context of Delone & McLean Success Model. Başkent Üniversitesi Ticari Bilimler Fakültesi Dergisi, 7(1), 49–61. https://dergipark.org.tr/en/pub/jcsci/issue/76359/1259663
    42. Katili, M. R., Tuloli, M. S., Bau, R. T. R., & Utina, I. (2024). Measuring the success of village information systems using the DeLone and McLean model. Jambura Journal of Informatics, 6(1), 40–51. https://ejurnal.ung.ac.id/index.php/jji/article/view/24742
    43. Kazancoglu, Y., Lafci, C., Berberoglu, Y., Upadhyay, A., Rocha-Lona, L., & Kumar, V. (2024). The effects of globalization on supply chain resilience: Outsourcing techniques as interventionism, protectionism, and regionalization strategies. Operations Management Research, 17(2), 505–522. https://doi.org/10.1007/s12063-023-00429-1
    44. Kim, Y. J., Eom, M., & Ahn, J. H. (2005). Measuring IS service quality in the context of the service quality-user satisfaction relationship. Journal of Information Technology Theory and Application (JITTA), 7(2), 6. https://aisel.aisnet.org/jitta/vol7/iss2/6/
    45. Kiron, D., Prentice, P. K., & Ferguson, R. B. (2013). Raising the bar with analytics. MIT Sloan Management Review. https://sloanreview.mit.edu/article/raising-the-bar-with-analytics/
    46. Kositanurit, B., Ngwenyama, O., & Osei-Bryson, K.-M. (2006). An exploration of factors that impact individual performance in an ERP environment: An analysis using multiple analytical techniques. European Journal of Information Systems, 15(6), 556–568. https://doi.org/10.1057/palgrave.ejis.3000654
    47. Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M., Păun, D., & Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), 10424. https://doi.org/10.3390/su131810424
    48. Lee, Y., Howe, M., & Kreiser, P. M. (2019). Organisational culture and entrepreneurial orientation: An orthogonal perspective of individualism and collectivism. International Small Business Journal, 37(2), 125–152. https://doi.org/10.1177/0266242618807276
    49. Li, N. (2023). Ethical considerations in artificial intelligence: A comprehensive discussion from the perspective of computer vision. SHS Web of Conferences, 179, 04024. https://doi.org/10.1051/shsconf/202317904024
    50. Livari, J. (2005). An empirical test of the DeLone-McLean model of information system success. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 36(2), 8–27. https://doi.org/10.1145/1066149.1066152
    51. Luarn, P., Lin, T. M., & Lo, P. K. (2005). Non-enforceable implementation of enterprise mobilization: An exploratory study of the critical success factors. Industrial Management & Data Systems, 105(6), 786–814. https://doi.org/10.1108/02635570510606957
    52. Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education.https://www.researchgate.net/publication/299561597_Intelligence_Unleashed_An_argument_for_AI_in_Education
    53. Maghsoudi, M., & Nezafati, N. (2023). Navigating the acceptance of implementing business intelligence in organizations: A system dynamics approach. Telematics and Informatics Reports, 11, 100070. https://doi.org/10.1016/j.teler.2023.100070
    54. Makokha, M. W., & Ochieng, D. O. (2014). Assessing the success of ICTs from a user perspective: Case study of Coffee Research Foundation, Kenya. Journal of Management and Strategy, 5(4), 46–53. https://www.sciedu.ca/journal/index.php/jms/article/view/5753
    55. Mamad, M., & Chahdi, F. O. (2013). The factors of the collaboration between the upstream supply chain actors: Case of the automotive sector in Morocco. International Business Research, 6(11), 15. https://doi.org/10.5539/ibr.v6n11p15
    56. Mankins, M. C., & Steele, R. (2005). Turning great strategy into great performance. Harvard Business Review, 83(7/8), 64–72. https://hbr.org/2005/07/turning-great-strategy-into-great-performance
    57. Moussas, K., Hafiane, J., & Achaba, A. (2024). Business intelligence and its pivotal role in organizational performance: An exhaustive literature review. Journal of Autonomous Intelligence, 7(4). http://jai.front-sci.com/index.php/jai/article/view/1286
    58. Mudzana, T., & Maharaj, M. (2015). Measuring the success of business-intelligence systems in South Africa: An empirical investigation applying the DeLone and McLean Model. SA Journal of Information Management, 17(1). https://doi.org/10.4102/sajim.v17i1.646
    59. Mungoli, N. (2020). Exploring the technological benefits of VR in physical fitness [Master’s thesis, The University of North Carolina at Charlotte]. ProQuest.
    60. Mungoli, N. (2023a). Adaptive ensemble learning: Boosting model performance through intelligent feature fusion in deep neural networks (arXiv:2304.02653). arXiv. http://arxiv.org/abs/2304.02653
    61. Mungoli, N. (2023b). Adaptive feature fusion: Enhancing generalization in deep learning models (arXiv:2304.03290). arXiv. http://arxiv.org/abs/2304.03290
    62. Neely, A. D., Adams, C., & Kennerley, M. (2002). The performance prism: The scorecard for measuring and managing business success. Prentice Hall Financial Times London. https://www.academia.edu/download/54855048/NM_Performance_Prism.pdf
    63. Niu, Y., Ying, L., Yang, J., Bao, M., & Sivaparthipan, C. B. (2021). Organizational business intelligence and decision making using big data analytics. Information Processing & Management, 58(6), 102725. https://doi.org/10.1016/j.ipm.2021.102725
    64. Pandian, R. K. (2017). Does manufacturing matter for economic growth in the era of globalization? Social Forces, 95(3), 909–940. https://doi.org/10.1093/sf/sox001
    65. Parasuraman, A., Zeithaml, V. A., & Berry, L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12–40. https://www.sciencedirect.com/science/article/abs/pii/0022435988900213.
    66. Peters, M. D., Wieder, B., Sutton, S. G., & Wakefield, J. (2016). Business intelligence systems use in performance measurement capabilities: Implications for enhanced competitive advantage. International Journal of Accounting Information Systems, 21, 1–17. https://doi.org/10.1016/j.accinf.2016.03.001
    67. Petreski, M. (2021). Has globalization shrunk manufacturing labor share in transition economies? Journal of Comparative Economics, 49(1), 201–211. https://doi.org/10.1016/j.jce.2020.12.004
    68. Popenici, S., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12, 22. https://doi.org/10.1186/s41039-017-0062-8
    69. Rafiq, M., Zhang, X., Yuan, J., Naz, S., & Maqbool, S. (2020). Impact of a balanced scorecard as a strategic management system tool to improve sustainable development: Measuring the mediation of organizational performance through PLS-smart. Sustainability, 12(4), 1365. https://doi.org/10.3390/su12041365
    70. Rahmi, S., Novianti, N., Harahap, E. F., & Yunilma, D. R. (2023). Analysis of success factors in the implementation of the Directorate General of Taxes Information System Development (SIDJP) using the DeLone and McLean model. KnE Social Sciences, 77–91. https://doi.org/10.18502/kss.v7i9.10958
    71. Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information Systems Research, 13(1), 50–69. https://doi.org/10.1287/isre.13.1.50.96
    72. Ramirez-Correa, P. E., Rondan-Cataluña, F. J., Arenas-Gaitán, J., & Alfaro-Perez, J. L. (2017). Moderating effect of learning styles on a learning management system’s success. Telematics and Informatics, 34(1), 272–286. https://doi.org/10.1016/j.tele.2016.04.006
    73. Reshi, Y. S., & Khan, R. A. (2014). Creating business intelligence through machine learning: An effective business decision making tool. Information and Knowledge Management, 4(1), 65–75. https://www.academia.edu/download/34228125/Creating_Business_Intelligence_through_Machine_Learning-An_Effective_Business_Decision_Making_Tool.pdf
    74. Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240–253. https://doi.org/10.1287/isre.8.3.240
    75. Seddon, P., & Kiew, M.-Y. (1996). A partial test and development of DeLone and McLean’s model of IS success. Australasian Journal of Information Systems, 4(1), 90–109. https://doi.org/10.3127/ajis.v4i1.379
    76. Seddon, P., & Yip, S.-K. (1992). An empirical evaluation of user information satisfaction (UIS) measures for use with general ledger accounting software. Journal of Information Systems, 6(1), 75–98. https://doi.org/10.2308/jis.1992.6.1.75
    77. Son, H., Park, Y., Kim, C., & Chou, J.-S. (2012). Toward an understanding of construction professionals’ acceptance of mobile computing devices in South Korea: An extension of the technology acceptance model. Automation in Construction, 28, 82–90. https://doi.org/10.1016/j.autcon.2012.06.009
    78. Stefanovic, D., Marjanovic, U., Delić, M., Culibrk, D., & Lalic, B. (2016). Assessing the success of e-government systems: An employee perspective. Information & Management, 53(6), 717–726. https://doi.org/10.1016/j.im.2016.02.007
    79. Tavera Romero, C. A., Ortiz, J. H., Khalaf, O. I., & Ríos Prado, A. (2021). Business intelligence: Business evolution after industry 4.0. Sustainability, 13(18), 10026. https://doi.org/10.3390/su131810026
    80. Teoh, A. P., & Lim, M. R. E. K. (2014). Predictors and outcome of business intelligence system implementation: A perspective of manufacturers in Malaysia. Research Journal of Applied Sciences, Engineering and Technology, 8(18), https://doi.org/10.19026/rjaset.8.1190
    81. Thanos, J. G. E., & Achjari, D. (2021). Analisis manfaat penerapan sistem informasi desa di Kabupaten Bantul. ABIS: Accounting and Business Information Systems Journal, 9(4). https://doi.org/10.1016/j.abis.2021.04.007
    82. Ungerer, L., & Slade, S. (2022). Ethical considerations of artificial intelligence in learning analytics in distance education contexts. In P. Prinsloo, S. Slade, & M. Khalil (Éds.), Learning Analytics in Open and Distributed Learning (pp. 105–120). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0786-9_8
    83. Urbach, N., & Müller, B. (2012). The updated DeLone and McLean model of information systems success. In Y. K. Dwivedi, M. R. Wade, & S. L. Schneberger (Éds.), Information Systems Theory (Vol. 28, pp. 1–18). Springer New York. https://doi.org/10.1007/978-1-4419-6108-2_1
    84. Vaidya, K., Sajeev, A., & Kwan, P. (2007). Electronic procurement in the Australian public sector: The organizational assimilation process and its impact on public procurement performance. University of New England. https://rune.une.edu.au/web/handle/1959.11/18691
    85. Vugec, D. S., Vukšić, V. B., Bach, M. P., Jaklič, J., & Štemberger, M. I. (2020). Business intelligence and organizational performance. Business Process Management Journal, 26(6), 1709–1730. https://doi.org/10.1108/BPMJ-10-2019-0411
    86. Weill, P., & Woerner, S. (2018). Is your company ready for a digital future? MIT Sloan Management Review. https://direct.mit.edu/books/edited-volume/chapter-pdf/2254830/9780262352642_cab.pdf
    87. Williams, M. D., Rana, N. P., & Dwivedi, Y. K. (2012). A bibliometric analysis of articles citing the Unified Theory of Acceptance and Use of Technology. In Y. K. Dwivedi, M. R. Wade, & S. L. Schneberger (Éds.), Information Systems Theory (Vol. 28, pp. 37–62). Springer New York. https://doi.org/10.1007/978-1-4419-6108-2_3
    88. Zhao, Z., Weng, N. G., & Sharif, S. B. (2024). Design and application of performance evaluation model of school education informatization based on artificial intelligence mode. Journal of Autonomous Intelligence, 7(1). http://jai.front-sci.com/index.php/jai/article/view/906

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Mantouzi, S., Youssef, S., Mouatassim, A. E., Ourahou, Y., Jafi, H., Zouhouredine, I., & Hamliri, M. (2025). Leveraging AI for business intelligence: A pathway to improved organizational performance in Morocco’s manufacturing sector. Multidisciplinary Science Journal, 7(9), 2025412. https://doi.org/10.31893/multiscience.2025412
  • Article viewed - 235
  • PDF downloaded - 24