• Abstract

    Aquaculture plays a vital role in the global supply of animal protein, and as demand for seafood continues to rise, the sector is increasingly relying on technological advancements to enhance productivity, efficiency, and sustainability. One of the key challenges in aquaculture is optimizing fish feeding to ensure proper growth while minimizing waste and reducing environmental impact. The development of the Remotely Operated Moving Feeder (ROMF) represents a significant step toward solving this challenge by integrating modern Internet of Things (IoT) technology with aquaculture practices. This study focuses on designing a control system for the ROMF, which utilizes an Arduino Mega 2560 microcontroller in combination with a Wemos D1 Mini module. These components allow for remote control of the fish feeding process, offering aquaculture managers the ability to monitor and adjust feeding schedules and quantities from a distance. The system incorporates various hardware components, including servo motors, DC motors, and motor speed controllers, all of which are controlled through software developed using the Arduino Integrated Development Environment (IDE). Initial testing of the ROMF has shown promising results, with the system functioning effectively to distribute feed to fish, thereby improving feeding efficiency. The system reduces feed waste by precisely controlling the amount and timing of food delivered, which in turn helps minimize the environmental footprint of aquaculture operations. Additionally, the study suggests further improvements to ROMF, such as the inclusion of a GPS sensor and the integration with water quality monitoring systems. These enhancements could provide valuable insights into environmental conditions and further optimize feeding practices. Ultimately, the ROMF is poised to be an innovative solution for modernizing aquaculture with IoT technology, promoting sustainability, and improving operational efficiency

  • References

    1. Alloju, S. P. (2021). Speed control of DC motor using PWM. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3917884
    2. Autsou, S., Kudelina, K., Vaimann, T., Rassõlkin, A., & Kallaste, A. (2024). Principles and methods of servomotor control: Comparative analysis and applications. Applied Sciences (Switzerland), 14(6), 2–22. https://doi.org/10.3390/app14062579
    3. Desti Rahmaniar, F., Endri, J., Salamah, I., & Rahmaniar, F. D. (2023). Design of automatic organic fertilizer processing tools by utilizing the Internet of Things (IoT) as a monitoring system. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 9(3), 684–692. https://doi.org/10.26555/jiteki.v9i3.26528
    4. Dhaifullah, I. R., Muttanifudin, H. M., Ananda Salsabila, A., & Ainul Yaqin, M. (2022). Survei teknik pengujian software. Journal Automation Computer Information System, 2(1), 31–38. https://doi.org/10.47134/jacis.v2i1.42
    5. Diaz, S. A., Martinez, R. J., Ojeda, S. G., Nunez, M. A. N., Mota, J. R., & Delgado, F. M. (2024). Design of a mobile aquatic feeder for Oreochromis niloticus. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 12(Especial 2), 86–92.
    6. Fauzi, R. A., Hestiani, M. D., Suciati, D., & Saputra, R. A. (2022). Pengenalan software dan hardware komputer guna meningkatkan wawasan teknologi kepada siswa SDN Iwul 3 Kecamatan Parung Kabupaten Bogor – Jawa Barat. Praxis: Jurnal Pengabdian Kepada Masyarakat, 2(2), 192–197.
    7. Ghayth, A., & Şimşir, M. (2023). Recent trends and challenges of electric motor technologies. International Journal of Electrical Engineering and Sustainability (IJEES), 1(2), 21–28. https://ijees.org/index.php/ijees/index
    8. Hanggara, P., Alfianto, A. S., Purnama, L. P., & Tanra, I. (2024). Portable low-cost home sleep monitor using Wemos D1 Mini. Advance Sustainable Science, Engineering and Technology, 6(2), 01–08. https://doi.org/10.26877/asset.v6i2.18435
    9. Ismailov, A. S., & Jo‘rayev, Z. B. (2022). Study of Arduino microcontroller board. Science and Education Scientific Journal, 3(3), 172–179.
    10. Jiang, J., Li, Z., Li, W., Ranjan, P., Wei, X., Zhang, X., & Zhang, C. (2023). A review on insulation challenges towards electrification of aircraft. High Voltage, 8(2), 209–230. https://doi.org/10.1049/hve2.12304
    11. Li, T. (2023). Design of DC motor speed control system based on PID algorithm. 2023 2nd International Conference for Innovation in Technology (INOCON 2023), 6(8), 114–118. https://doi.org/10.1109/INOCON57975.2023.10101233
    12. Lillestrøm, V., Haddara, M., & Langseth, M. (2024). Unlocking the potentials of IoT adoption in agriculture: Insights from CENTERIS – International Conference on ENTERprise Information Systems / ProjMAN. Procedia Computer Science, 239, 1015–1026. https://doi.org/10.1016/j.procs.2024.06.265
    13. Łyczek, M., & Skarka, W. (2024). Review of methods for PCB panel depanelization and methods for correct assembly of electronic components on PCB panels. Electronics (Switzerland), 13(7), 1–15. https://doi.org/10.3390/electronics13071255
    14. Mohamed, I. I., Hikmah, N., & Mohamed, N. E. (2020). Design and development of microcontroller-based automatic fish feeder system. International Journal of Engineering Science and Computing (IJESC), 10(4), 25380–25383. http://ijesc.org/
    15. Nirwan, S., Swarnakar, R., Jayarajan, A., & Shah, P. (2017). The development of automatic fish feeder system using Arduino Uno. International Journal of Modern Trends in Engineering & Research, 4(7), 64–68. https://doi.org/10.21884/ijmter.2017.4212.q747l
    16. Noor, M. Z. H., Hussian, A. K., Saaid, M. F., Ali, M. S. A. M., & Zolkapli, M. (2012). The design and development of automatic fish feeder system using PIC microcontroller. Proceedings of the 2012 IEEE Control and System Graduate Research Colloquium (ICSGRC 2012), 343–347. https://doi.org/10.1109/ICSGRC.2012.6287189
    17. Osueke, O. C., Olayanju, T. M. A., Onokwai, A. O., & Uzendu, P. (2018). Design and construction of an automatic fish feeder machine. International Journal of Mechanical Engineering and Technology, 9(10), 1631–1645.
    18. Pires de Souza, L., & Zelir Azzolin, R. (2020). Dead zone compensation in direct current motors: A review. Sociedade Brasileira de Automatica, 2(1). https://doi.org/10.48011/asba.v2i1.1223
    19. Rahmat, A., Bengen, D. G., Lestari, D. F., Agus, S. B., Pasaribu, R. A., Jusadi, D., & Panggabean, D. (2024). Crab monitoring system (CMS) using Internet of Things (IoT). BIO Web of Conferences, 106. https://doi.org/10.1051/bioconf/202410601001
    20. Ramli, R. M., & Jabbar, W. A. (2022). Design and implementation of solar-powered with IoT-enabled portable irrigation system. Internet of Things and Cyber-Physical Systems, 2, 212–225. https://doi.org/10.1016/j.iotcps.2022.12.002
    21. Wayangkau, I. H., Nggego, D. A., Chotimah, C., & Patawaran, N. (2023). Internet of Things implementation in automatic fish feeding. Technium, 17, 67–74.
    22. Zhou, C., Xu, D., Lin, K., Sun, C., & Yang, X. (2018). Intelligent feeding control methods in aquaculture with an emphasis on fish: A review. Reviews in Aquaculture, 10(4), 975–993. https://doi.org/10.1111/raq.12218

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Basino, Wibowoa, B., Frianda, D. N., Susanto, I., Ridhwan, R. Z., Ramli, T. H., & Saputra, R. S. H. (2025). Control system design of the romf (remotely operated moving feeder). Multidisciplinary Science Journal, 7(9), 2025432. https://doi.org/10.31893/multiscience.2025432
  • Article viewed - 100
  • PDF downloaded - 21