• Abstract

    The present paper examines the contribution of geophysical methods to the detection of underground cavities, with a particular focus on a case study in the Sahel region between El Jadida and Safi. This coastal area, marked by urban development and critical infrastructure, faces significant risks due to cavity formation and potential subsidence, which pose threats to local populations and essential transport networks. To address these challenges, the study employs an integrated geophysical approach, combining Electrical Resistivity Tomography (ERT), Ground-Penetrating Radar (GPR), and borehole drilling. Each method plays a distinct yet complementary role in cavity detection. ERT identifies resistivity anomalies associated with subsurface voids, offering insight into deeper structures. GPR provides high-resolution imaging of shallow subsurface features, allowing for the identification of cavities near the surface. Borehole drilling serves as a direct validation tool, confirming anomalies detected by ERT and GPR. The integration of these methods enhances the precision, reliability, and depth of cavity detection, enabling accurate mapping and characterization of underground anomalies. This methodological synergy facilitates risk assessment and early intervention, offering a robust framework for monitoring subsidence-prone areas and supporting decision-makers in the implementation of preventative measures. By safeguarding infrastructure and local communities from potential collapses, this study highlights the importance of geophysical techniques in mitigating geotechnical hazards. The results underscore the vital role of geophysics in enhancing safety, infrastructure resilience, and sustainable urban development in vulnerable coastal regions, demonstrating the effectiveness of multidisciplinary approaches to addressing complex subsurface challenges. This approach promotes proactive risk management, reducing potential socio-economic impacts and ensuring long-term infrastructure sustainability.

  • References

    1. Abdullah, S. M., Khan, M. A., & Ahmed, N. (2022). Detection of Underground Cavities Using Ground Penetrating Radar (GPR): Analysis of Radargram Hyperbolic Reflections in Karst Areas. Near Surface Geophysics, 20, 76–88.
    2. Ait Elfakih, T., Bahi, L., Akhssas, A., Ouadif, L. and Benkmil, R. (2020). Electrical resistivity tomography contribution to the characterization of underground cavities in the region of Safi, Morocco. E3S Web of Conferences, 150, 03023. p. https://doi.org/10.1051/e3sconf/202015003023
    3. Andriani, G. F. and Loiotine, L. (2020). Multidisciplinary approach for assessment of the factors affecting geohazard in karst valley: The case study of Gravina di Petruscio (Apulia, South Italy). Environmental Earth Sciences, 79(19), 458. p. https://doi.org/10.1007/s12665-020-09212-y
    4. Beck, B.F. (19
    5. . Sinkholes: their geology, engineering and environmental impact. Proc. First Multidiscip. Conf. SmkholesOrlandoFlorida 117.
    6. Boualla, O., Fadili, A., Najib, S., Mehdi, K., Makan, A. and Zourarah, B. (2021). Assessment of collapse dolines occurrence using electrical resistivity tomography: Case study of Moul El Bergui area, Western Morocco. Journal of Applied Geophysics, 191, 104366. p. https://doi.org/10.1016/j.jappgeo.2021.104366
    7. Chen, D., Liu, H., & Wang, J. (2020). Application of Borehole Logging for Validation of Geophysical Anomalies in Subsurface Investigations. Journal of Environmental and Engineering Geophysics, 25, 123–135.
    8. Colette Grégoire, Audrey Van der Wielen, Carl Van Geem, Jean-Pierre Drevet (ISSeP). Développement de la technique géoradar en auscultation de routes/Centre de recherches routières. – Bruxelles : CRR, 2018, 132 p. – (Compte rendu de recherche, ISSN 1376-9359 ; 46). (Development of the georadar technique for road testing/ Road Research Center). (In French). Available at: https://brrc.be/sites/default/files/2019-09/cr46.pdf
    9. El Alami, A., Ouadif L.,Baba K., Akhssas A., Bahi L. and Hasnaoui M. D. (2017). Geophysical prospecting of groundwater in Laaouamra, Morocco, using VES method and GIS. ARPN Journal of Engineering and Applied Sciences, Vol. 12, No. 11, pp.3492- 3499, https://www.arpnjournals.org/jeas/research_papers/rp_2017/jeas_0617_6081.pdf
    10. Elfakih, T. A., Bahi, L. and Akhssas, A. (2018). VERTICAL ELECTRICAL SOUNDING CONTRIBUTION FOR DELINEATING UNDERGROUND CAVITIES IN THE REGION OF SAFI, MOROCCO. INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) Volume 9, Issue 9, pp. 1728–1738. Available at https://iaeme.com/Home/issue/IJCIET?Volume=9&Issue=9
    11. Esposito, C., Belcecchi, N., Bozzano, F., Brunetti, A., Marmoni, G. M., Mazzanti, P., Romeo, S., Cammillozzi, F., Cecchini, G. and Spizzirri, M. (2021). Integration of satellite-based A-DInSAR and geological modeling supporting the prevention from anthropogenic sinkholes: A case study in the urban area of Rome. Geomatics, Natural Hazards and Risk, 12(1), 2835–2864. pp. https://doi.org/10.1080/19475705.2021.1978562
    12. Farfour*, M., Abdellah, O., Al-Shukaili, F. (2020). Geophysical investigation of underground cavity in Bimah Sinkhole, Northern Oman, in: Fifth International Conference on Engineering Geophysics, Al Ain, UAE, 21–24 October 2019. Presented at the Fifth International Conference on Engineering Geophysics (ICEG), 21–24 October 2019, Al Ain, UAE, Society of Exploration Geophysicists, Al Ain, UAE, pp. 203–206. https://doi.org/10.1190/iceg2019-052.1
    13. Fasani, G. B., Bozzano, F., Cardarelli, E., & Cercato, M. (2012). Underground cavity investigation within the city of Rome (Italy) : A multi-disciplinary approach combining geological and geophysical data. Engineering Geology, 152(1), 109‑121. https://doi.org/10.1016/j.enggeo.2012.10.006
    14. Fu, A.S. (2022). Risky Cities: The Physical and Fiscal Nature of Disaster Capitalism. Rutgers University Press.
    15. Funk, B., Flores-Orozco, A. and Steiner, M. (2024). Possibilities and limitations of cave detection with ERT. Geomorphology, 462, 109332. p. https://doi.org/10.1016/j.geomorph.2024.109332
    16. Hajna, N. Z., Pruner, P., Bosák, P. and Mihevc, A. (2024). Temporal insights into karst system evolution: A case study of the unroofed cave above Škocjanske Jame, NW Dinarides. Geomorphology, 461, 109282. p. https://doi.org/10.1016/j.geomorph.2024.109282
    17. Hermosilla, J. M., Garcia, E., & Del Pozo, J. (2018). Improved Detection of Subsurface Voids Using Multiple GPR Profiles in Karstic Regions. Journal of Applied Geophysics, 162, 78–92.
    18. Hermosilla, R. G. (2012). The Guatemala City sinkhole collapses. Carbonates and Evaporites, 27(2), 103–107. pp. https://doi.org/10.1007/s13146-011-0074-1
    19. Hussain, Y., Uagoda, R., Borges, W., Nunes, J., Hamza, O., Condori, C., Aslam, K., Dou, J. and Cárdenas-Soto, M. (2020). The Potential Use of Geophysical Methods to Identify Cavities, Sinkholes and Pathways for Water Infiltration. Water, 12(8), 2289. p. https://doi.org/10.3390/w12082289
    20. Liu, D., Wang, L., Liu, L., Xu, J., Wu, J., Liu, P. (2024). Application of geophysical methods in fine detection of urban concealed karst: A case study of Wuhan City, China. China Geol. 7, 517–532. https://doi.org/10.31035/cg2023046
    21. Margiotta, S., Marini, G., Fay, S., D’Onghia, F. M., Liso, I. S., Parise, M. and Pinna, M. (2021). Hydro-Stratigraphic Conditions and Human Activity Leading to Development of a Sinkhole Cluster in a Mediterranean Water Ecosystem. Hydrology, 8(3), 111. p. https://doi.org/10.3390/hydrology8030111
    22. Massaad, P., Cuccaroni, A., Thomas, D. and Lorio, O. (2014). GESTION DES RISQUES CAVITES SUR LA LGV EST EUROPEENNE 2EME PHASE. https://www.cfmr-roches.org/sites/default/files/jngg/199.pdf
    23. Namjesnik, D., Kinscher, J., Contrucci, I. and Klein, E. (2022). Impact of past mining on public safety: Seismicity in area of flooded abandoned coal Gardanne mine, France. International Journal of Coal Science & Technology, 9(1), 90. p. https://doi.org/10.1007/s40789-022-00558-1
    24. Nguyen, Q. D., Tran, N. T., & Pham, D. L. (2021). Multi-Method Geophysical Approach for the Detection of Subsurface Anomalies in Urban Areas: Combining ERT, GPR, and Borehole Validation. Engineering Geology, 250, 101–120.
    25. Ocakoğlu, F., Tuncay, E., Hu, H.-M. and Shen, C.-C. (2024). Middle Holocene Göynük landslide (NW Anatolia): Geomorphological frame, failure mechanism, and a large (Mw7.9) earthquake trigger from the North Anatolian Fault. Geomorphology, 463, 109370. p. https://doi.org/10.1016/j.geomorph.2024.109370
    26. Ouadif, L., Bahi, L. and Baba, K. (2014). Identification of formations of soil and subsoil using finite elements modeling. MATEC Web of Conferences, 11, 03003. p. https://doi.org/10.1051/matecconf/20141103003
    27. Ouadif, L., Bahi, L. and Baba, K. (2015). Using geostatistical method to delimit a water bearing formations. J. Mater. Environ. Sci.6(3) (2015) 647-655, https://www.jmaterenvironsci.com/Document/vol6/vol6_N3/75-JMES-1228-2014-Ouadif.pdf
    28. Ouadif, L., Bahi, L., Akhssas, A., Baba, K. and Menzhi, M. (2012). Geophysics Contribution for the Determination of Aquifers with a Case Study. International Journal of Geosciences, 03(01), 117–125. pp. https://doi.org/10.4236/ijg.2012.31014
    29. Putiška, R., Marschalko, M., Yilmaz, I., Niemiec, D., Cheng, X., Dostal, I., Kubáč, J. (2021). Surface Geophysical Methods used to Verify the Karst Geological Structure in the Built‐up Area: A Case Study of Specific Engineering‐Geological Conditions. Acta Geol. Sin. - Engl. Ed. 95, 1763–1770. https://doi.org/10.1111/1755-6724.14761
    30. Reina, A. and Loi, M. (2020). Urban Geology: The Geological Instability of the Apulian Historical Centers. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, C. M. Torre and Y. Karaca (Eds.), Computational Science and Its Applications – ICCSA 2020 (845–857. pp.). Springer International Publishing. https://doi.org/10.1007/978-3-030-58811-3_60
    31. Soussi, H., Bahi, L., Ouadif, L., Chibout, M., Aghazzaf, B., El Kasri, J. and Jaouda, I. (2020). Geophysical prospecting in the Doukkala area (Swalah commune) in Morocco. E3S Web of Conferences, 150, 03008. p. https://doi.org/10.1051/e3sconf/202015003008
    32. Soussi, H., Bahi, L., Ouadif, L., El Kasri, J., Bahi, A. and Aghazzaf, B. (2018). Contribution of electrical tomography in the study of the marine intrusion of sahel-doukkala, Morocco, International Journal of Civil Engineering and Technology, Vol. 9, No. 5, pp.1111-1120, https://iaeme.com/MasterAdmin/Journal_uploads/IJCIET/VOLUME_9_ISSUE_5/IJCIET_09_05_124.pdf
    33. Stevanović, Z. and Stevanović, A. M. (2021). Monitoring as the Key Factor for Sustainable Use and Protection of Groundwater in Karst Environments—An Overview. Sustainability, 13(10), 5468. p. https://doi.org/10.3390/su13105468
    34. Tabassum, F., Imtiaz, F., Alam, J., Alam, T., 2022. RISK ASSESMENT OF SINKHOLE OCCURRENCE IN BANGLADESH BY ANALYZING TRIGGER FACTORS OF SOUTH ASIAN SINKHOLE COLLAPSE INCIDENTS WITH SUGGESTIONS FOR POSSIBLE PREVENTIVE MEASURES. Proceedings of the 6th International Conference on Civil Engineering for Sustainable Development (ICCESD 2022), 10~12 February 2022, KUET, Khulna, Bangladesh (ISBN-978-984-35-1972-6)
    35. Tan, Y., Long, Y.-Y. (2021). Review of Cave-In Failures of Urban Roadways in China: A Database. J. Perform. Constr. Facil. 35, 04021080. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001658
    36. Toulkeridis, T., Rodríguez, F., Arias Jiménez, N., Baile, D.S., Martínez, R.S., Addison, A., Carreón Freyre, D., Mato, F., Díaz Perez, C., 2016. Causes and consequences of the sinkhole at El Trébol of Quito, Ecuador – implications for economic damage and risk assessment. Nat. Hazards Earth Syst. Sci. 16, 2031–2041. https://doi.org/10.5194/nhess-16-2031-2016
    37. Vennari, C., Parise, M. (2022). A Chronological Database about Natural and Anthropogenic Sinkholes in Italy. Geosciences 12, 200. https://doi.org/10.3390/geosciences12050200
    38. Vyzhva, S., Onyshchuk, V., Onyshchuk, I., Reva, M., Shabatura, O. (2020). Application of geophysical methods in the study of karst, in: Geoinformatics: Theoretical and Applied Aspects 2020. Presented at the Geoinformatics: Theoretical and Applied Aspects 2020, European Association of Geoscientists & Engineers, Kyiv, Ukraine, pp. 1–5. https://doi.org/10.3997/2214-4609.2020geo123
    39. Xiao, J., Zhang, L., Chen, Z., & Wang, Y. (2019). Application of Electrical Resistivity Tomography (ERT) in the Detection of Underground Cavities: A Case Study in Karst Areas. Journal of Applied Geophysics, 165, 1–15.
    40. Yusuf, M. A., Hassan, R., & Mustapha, A. (2021). Identification of Subsurface Cavities Using Electrical Resistivity Imaging in Karst Terrains. Geophysical Journal International, 223, 1002–1018.
    41. Zhang, Anbazhagan, P., Panjami, K. (2024). A Study on the Effectiveness of Various Geophysical Methods in Detecting Naturally Formed Cavities in Lateritic Deposit. Indian Geotech. J. 54, 1254–1270. https://doi.org/10.1007/s40098-023-00805-5
    42. Zhang, K., Wu, H., & Liu, Z. (2023). 3D Electrical Resistivity Tomography and Automated Radargram Classification for Enhanced Cavity Detection. Computers and Geosciences, 145, 104672.
    43. Zhou, W., Beck, B. F., & Adams, A. L. (2016). Effective Integration of Borehole Drilling and Resistivity Surveys for Cavity Detection in Karst Regions. Engineering Geology, 211, 95–108.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Rharouss, M., Benhaddou, K., Ouadif, L., Bouchaqour, M., & Menzhi, M. (2025). Contribution of geophysical methods for detecting underground cavities in the Abda-Doukkala region (Morocco). Multidisciplinary Science Journal, 7(8), 2025368. https://doi.org/10.31893/multiscience.2025368
  • Article viewed - 259
  • PDF downloaded - 113