• Abstract

    Concrete, despite its inherent robustness, is susceptible to various forms of degradation that can threaten the lifespan of infrastructures. This article investigates new approaches for predicting and preventing these degradations, with a focus on the Analytic Hierarchy Process (AHP). It begins by examining the critical mechanisms of concrete degradation, including chemical attacks such as sulfate dissolution and alkali-aggregate reactions, as well as aggravating factors like seawater exposure. The AHP is presented as a powerful tool for assessing degradation risks by accounting for the multitude of factors involved. The article demonstrates how AHP can be employed to prioritize risk factors based on their relative importance, quantify the influence of each factor on the durability of concrete, and develop targeted and optimized prevention strategies tailored to the specific conditions of each project. The aim is to provide engineers and construction professionals with a robust decision-making framework based on rigorous scientific methodology to enhance the durability and resilience of concrete structures.

  • References

    1. Abastante, F., Corrente, S., Greco, S., Ishizaka, A., & Lami, I. M. (2019). A new parsimonious AHP methodology: Assigning priorities to many objects by comparing pairwise few reference objects. Expert Systems with Applications, 127, 109–120. https://doi.org/10.1016/j.eswa.2019.02.036
    2. Abed, M., Rashid, K., Rehman, M. U., & Ju, M. (2022). Performance keys on self-compacting concrete using recycled aggregate with fly ash by multi-criteria analysis. Journal of Cleaner Production, 378(August), 134398. https://doi.org/10.1016/j.jclepro.2022.134398
    3. Ali, R., Hussain, A., Nazir, S., Khan, S., & Khan, H. U. (2023). Intelligent Decision Support Systems—An Analysis of Machine Learning and Multicriteria Decision-Making Methods. Applied Sciences (Switzerland), 13(22). https://doi.org/10.3390/app132212426
    4. Ali, S., Kumar, A., & Rizvi, S. H. (2022). Determination of Alkali Silica Reactivity (Asr) Potential of Aggregates in Khairpur Region. International Research Journal of Modernization in Engineering Technology and Science, 10, 1685–1690. https://doi.org/10.56726/irjmets30674
    5. Aliev, R. A., Kacprzyk, J., & Pedrycz, W. (2020). Advances in Intelligent Systems and Computing 1323 11th World Conference “ Intelligent System for Industrial Automation .”
    6. Ashrafian, A., Panahi, E., Salehi, S., & Taheri Amiri, M. J. (2022). On the implementation of the interpretable data-intelligence model for designing service life of structural concrete in a marine environment. Ocean Engineering, 256(January), 111523. https://doi.org/10.1016/j.oceaneng.2022.111523
    7. Behzadipour, A., & Shirazi, M. A. (2023). Sustainability cement block selection based on interval-valued hesitant fuzzy group analysis for construction industry problems. International Conference on Civil, Structural and Transportation Engineering, 141, 1–8. https://doi.org/10.11159/iccste23.141
    8. Benítez, P., Rocha, E., Varum, H., & Rodrigues, F. (2020). A dynamic multi-criteria decision-making model for the maintenance planning of reinforced concrete structures. Journal of Building Engineering, 27(September 2019). https://doi.org/10.1016/j.jobe.2019.100971
    9. Cai, Z., Ren, J., Shen, G., Jin, C., Gu, X., Cheng, W., & Wang, H. (2023). The Influence of Assembly Unit of Fibers on the Mechanical and Long-Term Properties of Reactive Powder Concrete. Coatings, 13(2). https://doi.org/10.3390/coatings13020412
    10. Can Ylldlrlm, B., Karakaya, G., & Gönül, M. S. (2021). Fibonacci Series-Based Pairwise Comparison Scale for Analytic Hierarchy Process. International Journal of Information Technology and Decision Making, 20(3), 959–986. https://doi.org/10.1142/S0219622021500243
    11. Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology, 29(4), 387–405. https://doi.org/10.1016/0022-2496(85)90002-1
    12. Dias, J. M. de A., Salgado, E. G., Barbosa, S., Alvarenga, A. D., & Lira, J. M. S. (2017). Assessment of the Sustainability of Countries at Worldwide. Journal of Management and Sustainability, 7(4), 51. https://doi.org/10.5539/jms.v7n4p51
    13. El Inaty, F., Marchetti, M., Quiertant, M., & Metalssi, O. O. (2024). Effect of curing on the coupled attack of sulfate and chloride ions on low-carbon cementitious materials including slag, fly ash, and metakaolin. Construction and Building Materials, 438(June), 137307. https://doi.org/10.1016/j.conbuildmat.2024.137307
    14. Filyushkina, A., Strange, N., Löf, M., Ezebilo, E. E., & Boman, M. (2018). Applying the Delphi method to assess impacts of forest management on biodiversity and habitat preservation. Forest Ecology and Management, 409(October 2017), 179–189. https://doi.org/10.1016/j.foreco.2017.10.022
    15. Hameed, F., & Hancock, K. (2014). Incorporating Costs of Life-Cycle Impacts into Transportation Program Development. Transportation Research Record, 2453, 77–83. https://doi.org/10.3141/2453-10
    16. HASHAD, M., SOLIMAN, F., SALEH, G., NEGM, S., BADRAN, M., & MOHAMMADEN, T. (2020). Geochemistry of the Miocene Sandstone and Shale At Um Greifat Area, Central Eastern Desert, Egypt: Implications To Provenance, Tectonic Setting and Rare Earth Elements Potentiality. Nuclear Sciences Scientific Journal, 9(2), 43–62. https://doi.org/10.21608/nssj.2020.265528
    17. Idrees, M., Akbar, A., Saeed, F., Saleem, H., Hussian, T., & Vatin, N. I. (2022). Improvement in Durability and Mechanical Performance of Concrete Exposed to Aggressive Environments by Using Polymer. Materials, 15(11). https://doi.org/10.3390/ma15113751
    18. Jin, Y. (2011). Study on high freeze-resistance of concrete. Advanced Materials Research, 261–263, 376–379. https://doi.org/10.4028/www.scientific.net/AMR.261-263.376
    19. Joaquin, R., Alexa, C., Glynnis, F., Elisabed, L., Alberto, B., Paulo, B. L., & Milene, G. (2024). Rocha Do Conde De Óbidos Maritime Station: Preliminary Results of the Inspection. In Lecture Notes in Civil Engineering (Vol. 444). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48461-2_16
    20. Kesete, T., Kanali, C., Okumu, V., & Tekeste, G. (2024). Development of A Machine Learning-Based Model for Predicting Compressive Strength of Ordinary Portland Cement. SSRG International Journal of Civil Engineering, 11(3), 80–93. https://doi.org/10.14445/23488352/IJCE-V11I3P107
    21. Khodyakov, D., Grant, S., Kroger, J., & Bauman, M. (2023). RAND Methodological Guidance for Conducting and Critically Appraising Delphi Panels. RAND Methodological Guidance for Conducting and Critically Appraising Delphi Panels. https://doi.org/10.7249/tla3082-1
    22. Kim, T. K., & Park, J. S. (2021). Experimental evaluation of the durability of concrete repair materials. Applied Sciences (Switzerland), 11(5), 1–18. https://doi.org/10.3390/app11052303
    23. Kostenarov, K., & Boevsky, I. (2022). Use of V-AHP model for strategic decision making in agricultural enterprises. Scientific Works, LXIII(1), 46–56. https://doi.org/10.22620/sciworks.2021.01.005
    24. Kripka, M., Mezzomo, K., & Pravia, Z. C. (2022). Multicriteria decision-making method applied to optimized reinforced concrete, steel and wood beams. Exacta. https://doi.org/10.5585/exactaep.2022.22138
    25. Laininen, P. (2003). Explaining Inconsistency of Ahp-Comparison Matrix By Decomposition Analysis. 277–278. https://doi.org/10.13033/isahp.y2003.021
    26. Maes, M., & De Belie, N. (2014). Resistance of concrete and mortar against combined attack of chloride and sodium sulphate. Cement and Concrete Composites, 53, 59–72. https://doi.org/10.1016/j.cemconcomp.2014.06.013
    27. Maohua, Z., Fating, X., Yanyu, S., & Yue, H. (2023). Durability of Concrete with Nanoparticles under the Action of Both Cl− Penetration and Freeze–Thaw Cycles. Journal of Cold Regions Engineering, 38(1). https://doi.org/https://doi.org/10.1061/JCRGEI.CRENG-642
    28. Markeset, G., & Kioumarsi, M. (2017). Need for Further Development in Service Life Modelling of Concrete Structures in Chloride Environment. Procedia Engineering, 171, 549–556. https://doi.org/10.1016/j.proeng.2017.01.371
    29. Metalssi, O. O., Ragoug, R., Barberon, F., Lacaillerie, J. B. d’Espinose de, Roussel, N., Divet, L., & Torrenti, J. M. (2023). Effect of an Early-Age Exposure on the Degradation Mechanisms of Cement Paste under External Sulfate Attack. Materials, 16(17). https://doi.org/10.3390/ma16176013
    30. Minelli, F., Martinelli, E., & Facconi, L. (2021). Innovative structural applications of high performance concrete materials in sustainable construction. In Sustainability (Switzerland) (Vol. 13, Issue 22). https://doi.org/10.3390/su132212491
    31. Mishra, S. K. (2023). Assessing Long-Term Impacts of Disaster Using Predictive Data Analyticsfor Effective Decision Support. International Journal of Advanced Research in Computer Science, 14(02), 17–25. https://doi.org/10.26483/ijarcs.v14i2.6956
    32. Montequín, V. R., Balsera, J. M. V., Piloñeta, M. D., & Pérez, C. Á. (2020). A bradley-terry model-based approach to prioritize the balance scorecard driving factors: The case study of a financial software factory. Mathematics, 8(2). https://doi.org/10.3390/math8020276
    33. Nugroho, A., Winardi, B., & Ajulian ZM, A. (2023). Integration of AHP method in best employee selection: a multi-criteria decision analysis approach for decision making. International Journal of Mechanical Computational and Manufacturing Research, 12(2), 40–45. https://doi.org/10.35335/computational.v12i2.119
    34. Ohnishi, S. I., Yamanoi, T., & Imai, H. (2009). On a weight representation for inner dependence method AHP. ISCIII ’09 - 4th International Symposium on Computational Intelligence and Intelligent Informatics, Proceedings, October, 113–117. https://doi.org/10.1109/ISCIII.2009.5342272
    35. Oletsky, O., & Tryhub, O. (2020). Use of Analytical Hierarchy Process for Automated Assessing of Students’ Study Projects. NaUKMA Research Papers. Computer Science, 3(0), 127–131. https://doi.org/10.18523/2617-3808.2020.3.127-131
    36. Oliveira, J. V. da C., Meira, F. F. D. de A., & Lucena, K. F. M. de. (2021). Application of mineral admixtures and steel fibers in experimental compositions for reactive powders concrete. Research, Society and Development, 10(1), e52610111910. https://doi.org/10.33448/rsd-v10i1.11910
    37. Oliveira, S., Oliveira, A. M., & Hasparyk, N. P. (2022). Uma Análise Comparativa Do Comportamento De Concreto Com E Sem Sílica Ativa Frente À Def. 119–132. https://doi.org/10.4322/cbpat.2022.011
    38. Panko, A. V, Kovzun, I. G., Prokopenko, V. A., Nikipelova, O. M., Tsyganovich, O. A., & Oliinyk, V. O. (2021). Catastrophic Phenomena on Marine Slopes and in Artificial Dams in a Presence of Nanostructured Iron-Aluminosilicates BT - Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications (O. Fesenko & L. Yatsenko (eds.); pp. 381–395). Springer International Publishing.
    39. Qiuyue Zhang, G. Z. (2024). Building Engineering Cost Prediction Based On Deep Learning: Model Construction and Real - Time Optimization. Journal of Electrical Systems, 20(5s), 151–164. https://doi.org/10.52783/jes.1887
    40. Rane, N. L., & Choudhary, S. P. (2023). Fuzzy AHP and Fuzzy TOPSIS as an effective and powerful Multi-Criteria Decision-Making (MCDM) method for subjective judgements in selection process. International Research Journal of Modernization in Engineering Technology and Science, 04, 3786–3799. https://doi.org/10.56726/irjmets36629
    41. REGOURD, M. (1981). Altération et durabilité des bétons. Conseil international de la langue française.
    42. Srebrenkoska, S., Apostolova, A., Dzidrov, M., & Krstev, D. (2023). Application of Analytical Hierarchy Process (AHP) in the Selection of a Flexible Production System. Engineering World, 5, 138–143. https://doi.org/10.37394/232025.2023.5.15
    43. Sroka, A., Hager, S., Misa, R., Dudek, M., & Tajdus, K. (2021). The application of Knothe’s theory for the planning of mining exploitation under the threat of discontinuous deformation of the surface and for the prediction of ground surface movements with rising water levels in the post-mining phase. Gospodarka Surowcami Mineralnymi / Mineral Resources Management, 37(4), 199–218. https://doi.org/10.24425/gsm.2021.139737
    44. Starczewski, T. (2017). Remarks on the impact of the adopted scale on the priority estimation quality. Journal of Applied Mathematics and Computational Mechanics, 16(3), 105–116. https://doi.org/10.17512/jamcm.2017.3.10
    45. Tadano, Y., Kawamura, H., & Suzuki, K. (n.d.). COMPARISON SUPPORT SYSTEM BASED ON COMPARISON PATTERN 2 . Amount of time for pairwise comparison in AHP 4 . Modeling of determine the best alternative using the AHP include the comparison support system.
    46. Teply, B., Vorechovska, Di., & Kersner, Z. (2010). Performance-based design of concrete structures: durability aspects. Structural Engineering and Mechanics, 35(4), 535–538. https://doi.org/https://doi.org/10.12989/sem.2010.35.4.535
    47. Tirkolaee, E. B., Dashtian, Z., Weber, G. W., Tomaskova, H., Soltani, M., & Mousavi, N. S. (2021). An integrated decision-making approach for green supplier selection in an agri-food supply chain: Threshold of robustness worthiness. Mathematics, 9(11), 1–30. https://doi.org/10.3390/math9111304
    48. Vedalakshmi, R., Raj, A. S., Srinivasan, S., & Ganesh Babu, K. (2005). Effect of magnesium and sulphate ions on the sulphate resistance of blended cements in low- and medium-strength concretes. Advances in Cement Research, 17(2), 47–55. https://doi.org/10.1680/adcr.17.2.47.65041
    49. Vink, K. (2020). Sustainable life cycle design aspects: how aware are material scientists? SN Applied Sciences, 2(8), 1–20. https://doi.org/10.1007/s42452-020-3151-z
    50. Widodo, S., Safarizki, H. A., & Marwahyudi, M. (2022). Durability of concrete based on the remaining life of the building Case study: reinforced concrete in klaten district. Astonjadro, 11(3), 713. https://doi.org/10.32832/astonjadro.v11i3.7848
    51. Zhang, S., Tian, B., Chen, B., Lu, X., Xiong, B., & Shuang, N. (2022). The Influence of Freeze–Thaw Cycles and Corrosion on Reinforced Concrete and the Relationship between the Evolutions of the Microstructure and Mechanical Properties. Materials, 15(18). https://doi.org/10.3390/ma15186215
    52. Zhao, G., Guo, M., Li, S., Weng, X., Ding, S., Han, F., & Wang, H. (2022). Influence of Ca2+ on Early Degradation of Cast-In-Situ Mortar Induced by Sulfate-Magnesium Multiple Combined Attack. Materials, 15(16). https://doi.org/10.3390/ma15165752
    53. Zhilyaev, D., Binnekamp, R., & Wolfert, A. M. R. (2022). Best Fit for Common Purpose: A Multi-Stakeholder Design Optimization Methodology for Construction Management. Buildings, 12(5). https://doi.org/10.3390/buildings12050527
    54. Zhou, J., Wang, L., Li, F., Ge, C., Li, J., Wang, Y., Kong, L., & Guo, J. (2024). A life cycle decision framework of China offshore wind turbines with ANP-Intuitionistic fuzzy TOPSIS method. Green Manufacturing Open, 2(1). https://doi.org/10.20517/gmo.2023.081802
    55. Zhu, X., Meng, X., & Zhang, M. (2021). Application of multiple criteria decision making methods in construction: A systematic literature review. Journal of Civil Engineering and Management, 27(6), 372–403. https://doi.org/10.3846/jcem.2021.15260

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Harroucha, R., Chaouni, A.-A., & El Ouardani, A. (2025). Prediction and prevention of concrete deterioration: New approaches based on multi-criteria analysis (AHP). Multidisciplinary Science Journal, 7(9), 2025420. https://doi.org/10.31893/multiscience.2025420
  • Article viewed - 126
  • PDF downloaded - 28