• Abstract

    Ampelocissus thyrsiflora (Blume) Planch. is a traditional North Sumatra medicinal plant that can be used to cure various ailments, such as wounds, diarrhea, infections, and as a stamina enhancer. A. thyrsiflora leaves contain secondary metabolite compounds such as alkaloids, flavonoids, tannins, and saponins, which have antibacterial properties. The extraction method used was microwave-assisted extraction (MAE) using ethanol solvent and different times and power extractions. The extraction process was optimized to obtain the optimum extraction conditions. Optimum extraction conditions can be developed as standardized herbal medicines. The method started with phytochemical screening and characterization of simplicia powder, extraction using MAE with 96% ethanol solvent with power variations of 180 watts, 300 watts, 450 W, and time variations of 3 min, 7 min, 15 min, determination of total phenol, and testing of antibacterial activity from optimization results using paper discs. The optimum extract yield was 20,20% at 450 watts of power and 15 min of time. Total phenol with optimum power and time of 232,0088±4,54 mg GAE/g sample was obtained from an ethanol extract of A. thyrsiflora leaves with 300 watts and 7 minutes is 6.25 mg/mL has an inhibition zone is 7,93±0,81 mm as bacterial minimum inhibitory concentration (MIC) and does not have minimum bacteria concentration (MBC) of Staphylococcus epidermidis bacteria. Ethanol extracts of A. thyrsiflora leaves with different extraction powers and times affected the yield of the extracts and total phenol. The antibacterial activity of the optimization result of ethanol extract of A. thyrsiflora leaves with the highest total phenol had MIC, but did not have MBC.

  • References

    1. Alam, G., Sartini., & Alfath, A. (2019). Comparison of microwave assisted extraction (MAE) with variations of power and infusion extraction method on antibacterial activity of rosella calyx extract (Hibiscus sabdariffa). Journal of Physics, 1341(7). https://doi:10.1088/1742-6596/1341/7/072002
    2. Alishlah, T., Mun’im, A., & Jufri, M. (2018). Optimization of imidazolium-based ionic liquid-microwave assisted extraction for oxyresveratrol extraction from morus alba roots. Journal of Young Pharmacists, 10(3), 272. https://doi.org/10.5530/JYP.2018.10.61
    3. Antony, A., & Farid, M. (2022). Effect of temperatures on polyphenols during extraction. Applied Sciences, 12(4), 2107. https://doi.org/10.3390/app12042107
    4. Anyanwu, B. C. ., Akoh, O. U., & Otuokere, I. E. (2022). Phytochemical Screening and proximate analysis of the leaves of Launaea (Lactuca) taraxacifolia . Journal of Chemical Society of Nigeria, 47(2). https://doi.org/10.46602/jcsn.v47i2.737
    5. Baek, S. H., Cao, L., Jeong, S. J., Kim, H. R., Nam, T. J., & Lee, S. G. (2021). The Comparison of Total Phenolics, Total Antioxidant, and Anti‐Tyrosinase Activities of Korean Sargassum Species. Journal of Food Quality, 2021(1), 6640789. https://doi.org/10.1155/2021/6640789
    6. Brown, M.M., & Horswill, A.R. (2020). Staphylococcus epidermidis-Skin friend of foe. Plos Pathog, 16(11). https://doi.org/10.1371/journal.ppat.1009026
    7. Chan, C.H., Yusoff, R., Ngoh, G.C., & Kung, F.W.L. (2011). Microwave-assisted extraction of active ingredients from plants. Journal of Chromatography A. 1218(37), 6213-6225. https://doi.org/10.1016/j.chroma.2011.07.040
    8. Depkes RI. (1995). Materia Medika Indonesia. Departemen Kesehatan RI.
    9. Doss, A. (2009). Preliminary pyhtochemical screening of some indian medicinal plants. Ancient Science of Life, 29(2), 12-16. https://journals.lww.com/asol/abstract/2009/29020/preliminary_phytochemical_screening_of_some_indian.4.aspx
    10. Ezez, D., & Tefera, M. (2021). Effects of solvents on total phenolic content and antioxidant activity of ginger extracts. Journal of Chemistry, 2021(1), 6635199
    11. https://doi.org/10.1155/2021/6635199
    12. Garcia, G.E., Walsh, C.J., Sayavedra, L., Diaz, C.T., Thapa, D., Ruas, M.P., Mayer, M.J., Cotter, P.D., & Narbad, A. (2020). Genotypic and phenotypic characterization of fecal staphylococcus epidermidis isolates suggests plasticity to adapt to different human body sites. Frontiers in Microbiology, 11. .https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2020.00688
    13. Godstime, O.C., Garcia, A., Augustina, J.O., & Christopher, E.A. (2014). Mechanism of antimicrobial actions of phytochemicals against enteric pathogen-A Review. Journal of Pharmaceutical,Chemical and Biological Sciences., 2(2), 77-85. https://www.researchgate.net/publication/271507390
    14. Gunalan, S., Thangaiah, A., janaki, J.G., Thiyagarajan, A., Kuppusamy, S., & Arunachalam. (2022). Optimization of Microwave-Assisted Extraction Method for Increased Extraction Yield and Total Phenol Content from Moringa Leaves (Moringa oleifera Lam.) var. Advances in Agriculture, 2022(1), 7370886. https://doi.org/10.1155/2022/7370886
    15. Haghgoo, R., Mehran, M., Afshari, E., Zadeh., Hamide, F., Ahmadvand., & Motahare. (2017). Antibacterial Effects of Different Concentrations of Althaea officinalis Root Extract versus 0.2% Chlorhexidine and Penicillin on Streptococcus mutans and Lactobacillus (In vitro). Journal of International Society of Preventive and Community Dentistry, 7(4), 180-185. https://DOI.org/10.4103/jispcd.JISPCD_150_17
    16. Humphries R.M., Ambler, J., Mitchell, S.L., Castanheira,M., Dingle,T.J.A., Koeth, L., & Sei K. (2018). CLSI Methods Development and Standardization Working Group Best Practices for Evaluation of Antimicrobial Susceptibility Tests. Journal of Clinical Microbiology, 56(10), 1128. https://doi.org/10.1128/jcm.01934-17
    17. Johari, M. A., & Khong, H. Y. (2019). Total phenolic content and antioxidant and antibacterial activities of Pereskia bleo. Advances in Pharmacological and Pharmaceutical Sciences, 2019(1), 7428593, https://doi.org/10.1155/2019/7428593
    18. Jubeh, B., Breijyeh, Z., & Karaman, R. (2020). Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules, 25(12), 2888. https://doi.org/10.3390/molecules25122888
    19. Khaerunnisa., Mahendradatta, M., Asfar, M. (2021). Characteristics of simplicia ginger (Zingiber officinale) and lemongrass (Cymbopogon citratus) powder by different drying method. International Conference Series: Earth and Enviromental Science (p.807). https://doi.10.1088/1755-1315/807/2/022052
    20. Khadijah., Soekamto, N.H., Firdaus., & Syah, Y.M. (2021). Total content of phenol and antioxidant activity from crude extract methanol of brown algae (Padina sp) collected from Kayoa Island, North Maluku. Journal of Physics: Conference Series (p.1889). Makassar, Indonesia.
    21. Kowalska, K.B., Dudek, W.R. (2021). The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens, 10(2), 165. https://doi.org/10.3390/pathogens10020165
    22. Kupina, S., Fields, C., Roman, M.C., & Brunelle, S.L. (2017). Determination of total phenolic content using the folin-C assay: single-laboratory validation, first action. Journal of AOAC INTERNATIONAL, 101(15), 1466-1472. https://doi.org/10.5740/jaoacint.18-0031
    23. Lopez, S.H., Camacho, D.B.H., Ocampo, M.L.A., & Jimenez, A.A.R. (2023). Microwave-assisted extraction of functional compounds from plants: A Review. Bio Resources, 18(3), 6614-6638.https://bioresources.cnr.ncsu.edu/resources/microwave-assisted-extraction-of-functional-compounds-from-plants-a-review/
    24. Mogana, R., Adhikari, A., Tzar, M. N., Ramliza, R., & Wiart, C. J. B. C. M. (2020). Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC complementary medicine and therapies, 20, 1-11. https://doi.org/10.1186/s12906-020-2837-5
    25. Nascimento, G.G.F., Locatelli, J., Freitas, P.C., & Silva, G.L. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria.
    26. Brazilian Journal of Microbiology, 31(4), 247–256. https://doi.org/10.1590/S1517-8382200000040000
    27. Oliver, S.P., Gillespie, B.E., Lewis, M.J., Ivey, S.J., Almeida, R.A., & Luther, D.L. (2001). Efficacy a new premilking teat disinfectant containing a phenolic combination for the prevent of mastitis. Journal Dairy Science, 84(6). https://doi.org/10.3168/jds.S0022-0302(01)70189-0
    28. Ondruschka, B., & Asghari, J. (2006). Microwave assisted extraction a state of the art overview of varieties. CHIMIA, 60(6), 321. https://doi.org/10.2533/000942906777836327
    29. Otto, M. (2009). Staphylococcus epidermidis – the ‘accidental’ pathogen. Nat Rev Microbiol, 7, 555-567. https://doi.org/10.1038/nrmicro2182
    30. Parvekar, P., Palaskar, J., Metgud, S., Maria, R., & Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial Investigations in Dentistry, 7(1), 105–109. https://doi.org/10.1080/26415275.2020.1796674
    31. Rahmawati., Fachri, B.A., Manurung, Y.H., Nurtsulutsiyah., & Reza, M. (2021). Application of response surface methodology in optimization condition of anthocyanin extraction process of cocoa peel waste with Microwave Assisted Extraction Method (MAE). International Conference on Global Resource Conversation (p.743), East Java, Indonesia. https://doi.org/10.1088/1755-1315/743/1/012091
    32. Rakatama, A. S., Pramono, A., & Yulianti, R. (2018). The antifungal inhibitory concentration effectiveness test from ethanol seed arabica coffee (Coffea arabica) extract against the growth of Candida albicans patient isolate with in vitro method. In Journal of Physics: Conference Series, 970(1), 012023. https://doi.org/10.1088/1742-6596/970/1/012023
    33. Saad, S., Taher, M., Susanti, D., Qaralleh, H., & Awang, A. F. I. B. (2012). In vitro antimicrobial activity of mangrove plant Sonneratia alba. Asian Pacific journal of tropical biomedicine, 2(6), 427-429. https://doi.org/10.1016/S2221-1691(12) 60069-0
    34. Salem, M. A., El-Shiekh, R. A., Hashem, R. A., & Hassan, M. (2021). In vivo antibacterial activity of star anise (Illicium verum Hook.) extract using murine MRSA skin infection model in relation to Its metabolite profile. Infection and Drug Resistance, 14, 33–48. https://doi.org/10.2147/IDR.S285940
    35. Scott, L.J. (2020). Delafloxacin: A Review in acute bacterial skin and skin structure infections. Drugs 80, 1247-1258. https://doi.org/10.1007/s40265-020-01358-0
    36. Shewale, S., Undale, V., Shelar, M., Pimple, B., Kuchekar, M., & Bhalchim, V. (2022). Macroscopic and microscopic evaluation of sansevieria cylindrica plant. Pharmacog Res, 14(4), 412-416. https://doi.org/10.5530/pres.14.4.60
    37. Silaban, E.E., Afifuddin, Y., & Batubara, R. (2015). Eksplorasi tumbuhan obat di kawasan gunung sibuatan, kecamatan merek, kabupaten karo, sumatera utara. Peromena Forestry Science Journal, 4(5), 5-7.
    38. Syafaatullah, A.Q., & Mahfud. (2021). Optimization extraction of Indigofera tinctoria L. using microwave-assisted extraction. International Conference on Chemical and Material Engineering (p.1053), Semarang, Indonesia. https://doi.org/10.1088/1757-899X/1053/1/012131
    39. Syamsul, D., Nurussakinah., Susanti, I., & Kartika, Y. (2022). Uji efek sari air serbuk simplisia daun gagatan harimau (Vitis gracilis BL.) sebagai tonikum terhadap mencit putih jantan (Mus musculus). Journal of Pharmaceutical And Sciences, 5, 464-472. https://doi.org/10.36490/journal-jps.com.v5i2.164
    40. Tatke.P., & Jaiswal, Y. (2011). An Overview of Microwave Assisted Extraction and its application in Herbal Drug Research. Research Journal of Medicinal Plant. 5(1). https://doi:10.3923/rjmp.2011.21.31
    41. Tavares, T.D., Antunes, J.C., Padrao, J., Riberio, A.I., Zille, A., Amorim, M.T.P., Ferreira, F., & Felgueiras, H.P. (2020). Activity of specialized biomolecules against gram positive and gram negative bacteria. Antibiotics, 9(6), 314. https://doi.org/10.3390/antibiotics9060314
    42. Zin, M.M., Anucha, C.B., & Bánvölgyi, S. (2020). Recovery of Phytochemicals via Electromagnetic Irradiation (Microwave-Assisted-Extraction): Betalain and Phenolic Compounds in Perspective. Foods, 9(7), 918. https://doi.org/10.3390/foods9070918

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Surbakti, C., Siallagan, A. F., Lubis, M. F., & Nasution, L. R. (2025). Optimization microwave-assisted extraction (MAE) to obtain total phenol from <em>Ampelocissus thyrsiflora</em> (Blume) Planch leaves for antibacterial activity response of <em>Staphylococcus Epidermidis</em>. Multidisciplinary Science Journal, 7(9), 2025423. https://doi.org/10.31893/multiscience.2025423
  • Article viewed - 124
  • PDF downloaded - 24