• Abstract

    Plectranthus amboinicus (Lour.) Spreng is the most important aromatic medicinal plant and has antimicrobial activity. This study investigated the major bioactive constituents and antibacterial activity of P. amboinicus extracts. The results revealed that the dominant phytochemicals that might be responsible for its bioactivity are alkaloids, terpenoids, tannins, phenolics, luteolin, and verbascoside. The herbal extract showed antibacterial capacity against the Staphylococcus aureus (MRSA) strain PB57, with a maximum zone of inhibition. The MIC and MBC values of the extract were found to be 7.81 mg/ml and 15.63 mg/ml, respectively. However, the cytotoxicity results indicated that the extract at concentrations lower than the MIC had a cytotoxic effect on fibroblasts. These findings suggest that P. amboinicus extract has great potential for use as an antimicrobial agent. Therefore, the toxicity of each compound contained in the herbal crude extract should be examined further in the future.

  • References

    1. Adebooye, O. C., Vijayalakshmi, R., & Singh, V. (2008). Peroxidase activity, chlorophylls and antioxidant profile of two leaf vegetables (Solanum nigrum L. and Amaranthus cruentus L.) under six pretreatment methods before cooking. International Journal of Food Science & Technology, 43(1), 173–178.
    2. Ain, Q. U., Khan, H., Mubarak, M. S., & Pervaiz, A. (2016). Plant alkaloids as antiplatelet agents: Drugs of the future in the light of recent developments. Frontiers in Pharmacology, 7, 292. https://doi.org/10.3389/fphar.2016.00292
    3. Alipieva, K., Korkina, L., Orhan, I. E., & Georgiev, M. I. (2014). Verbascoside: A review of its occurrence, (bio)synthesis, and pharmacological significance. Biotechnology Advances, 32(6), 1065–1076. https://doi.org/10.1016/j.biotechadv.2014.07.001
    4. Anie, C. O., Ikpefan, E. O., Enwa, F. O., Umunade, L., & Enomate, E. (2022). Anti-methicillin-resistant and growth inhibitory studies of extract and fractions of leaves of (Lam.) Kurz (Crassulaceae). Herba Polonica, 68(1), 19–28. https://doi.org/10.2478/hepo-2022-0003
    5. Arumugam, G., Swamy, M. K., & Sinniah, U. R. (2016). Plectranthus amboinicus (Lour.) Spreng: Botanical, phytochemical, pharmacological, and nutritional significance. Molecules, 21(4), 369. https://doi.org/10.3390/molecules21040369
    6. Ashaari, N. S., Ab Rahim, M. H., Sabri, S., Lai, K. S., Song, A. A., Abdul, R. R., et al. (2020). Functional characterization of a new terpene synthase from Plectranthus amboinicus. PLoS One, 15(7), e0235416. https://doi.org/10.1371/journal.pone.0235416
    7. Attia, Y. M., El-Kersh, D. M., Wagdy, H. A., & Elmazar, M. M. (2018). Verbascoside: Identification, quantification, and potential sensitization of colorectal cancer cells to 5-FU by targeting the PI3K/AKT pathway. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-30738-x
    8. Chariandy, C., Seaforth, C. E., Phelps, R., Pollard, G., & Khambay, B. (1999). Screening of medicinal plants from Trinidad and Tobago for antimicrobial and insecticidal properties. Journal of Ethnopharmacology, 64(3), 265–270. https://doi.org/10.1016/S0378-8741(98)00139-0
    9. Farnsworth, N. R. (1966). Biological and phytochemical screening of plants. Journal of Pharmaceutical Sciences, 55(3), 225–276. https://doi.org/10.1002/jps.2600550302
    10. Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT, and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 160(2), 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001
    11. Gejalakshmi, S., Senthilraj, R., Tanisha, B. A., Sruthi, S., Tharun, K. M., & Pooja, G. (2020). Phytochemical screening and antimicrobial activity of Azadirachta indica and Plectranthus amboinicus extract. International Journal of Current Pharmaceutical Review and Research, 12(1), 14–17.
    12. Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis. Springer Science & Business Media.
    13. Jiangseubchatveera, N., Liawruangrath, S., Teerawutgulrag, A., Santiarworn, D., Pyne, S. G., & Liawruangrath, B. (2017). Phytochemical screening, phenolic and flavonoid contents, antioxidant, and cytotoxic activities of Graptophyllum pictum (L.) Griff. Chiang Mai Journal of Science, 44(1), 193–202.
    14. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., et al. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. https://doi.org/10.1038/nature06536
    15. Khandelwal, K. (2008). Practical pharmacognosy. Pragati Books Pvt. Ltd.
    16. Kumara, S. M., Pokharen, N., Dahal, S., & Anuradha, M. (2011). Phytochemical and antimicrobial studies of leaf extract of Euphorbia nerifolia. Journal of Medicinal Plants Research, 5(24), 5785–5788.
    17. Lopez-Lazaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini-Reviews in Medicinal Chemistry, 9(1), 31–59. https://doi.org/10.2174/138955709787001712
    18. Mendelson, M., & Matsoso, M. P. (2015). The World Health Organization global action plan for antimicrobial resistance. South African Medical Journal, 105(5), 325–325. https://doi.org/10.7196/SAMJ.9644
    19. Newman, D. J., Cragg, G. M., & Snader, K. M. (2000). The influence of natural products upon drug discovery. Natural Product Reports, 17(3), 215–234. https://doi.org/10.1039/a902202c
    20. Oskoueian, E., Abdullah, N., Saad, W. Z., Omar, A. R., Kuan, W. B., Zolkifli, N. A., et al. (2011). Antioxidant, anti-inflammatory, and anticancer activities of methanolic extracts from Jatropha curcas Linn. Journal of Medicinal Plants Research, 5, 49–57.
    21. Oyedemi, S. O., & Afolayan, A. J. (2011). Antibacterial and antioxidant activities of hydroalcoholic stem bark extract of Schotia latifolia Jacq. Asian Pacific Journal of Tropical Medicine, 4(12), 952–958. https://doi.org/10.1016/S1995-7645(11)60222-2
    22. Peng, J., Zheng, T. T., Li, X., Liang, Y., Wang, L. J., Huang, Y. C., et al. (2019). Plant-derived alkaloids: The promising disease-modifying agents for inflammatory bowel disease. Frontiers in Pharmacology, 10, 351. https://doi.org/10.3389/fphar.2019.00351
    23. Rijo, P., Rodríguez, B., Duarte, A., & Fátima, S. M. (2011). Antimicrobial properties of Plectranthus ornatus extracts, 11-acetoxyhalima-5,13-dien-15-oic acid metabolite, and its derivatives. Journal of Natural Products, 1(1), 57–64.
    24. Singh, M., Rajput, M., Yadav, K., & Singh, N. (2022). Evaluation of antimicrobial activity and phytochemical qualitative analysis of Boiss. ex C. A. Mey. Herba Polonica, 68(2), 70–75. https://doi.org/10.2478/hepo-2022-0004
    25. Thaniarasu, R., Senthil, K. T., Abubacker, M., & Rao, M. (2015). Preliminary phytochemical screening and evaluation of antibacterial activity of different solvent extracts of Plectranthus bourneae Gamble (Lamiaceae). Asian Journal of Pharmaceutical and Clinical Research, 8(1), 79–82.
    26. Waglechner, N., Culp, E. J., & Wright, G. D. (2021). Ancient antibiotics, ancient resistance. EcoSal Plus, 9(2), eESP-0027-2020. https://doi.org/10.1128/ecosalplus.ESP-0027-2020

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Meesil, W., Wisuittipot, W., Ngoenkam, J., Muangpat, P., Vitta, A., & Thanwisai, A. (2025). Antibacterial activity of Plectranthus amboinicus (Lour.) Spreng extracts against pathogenic bacteria. Multidisciplinary Science Journal, 7(7), 2025336. https://doi.org/10.31893/multiscience.2025336
  • Article viewed - 415
  • PDF downloaded - 209