• Abstract

    Although the ranking of Ecuadorians per capita emissions is lower than global average, Ecuador´s institutions are committed to climate change mitigation considering the principle of common but differentiated responsibilities. The aim of the current study has been to determine the carbon footprint in the main building of the Municipal Government of Rumiñahui (GADMUR) in Central Ecuador during 2019 and 2020, as well as identifying the effects related to the COVID pandemic, in order to ultimately propose emissions mitigation measures. For that, a quantitative methodology has been used, based on a bibliographic and documentary review, interviews and a survey conducted to a sample of 172 GADMUR employees. Among the results, it was obtained that in 2019, the GADMUR emitted a total of 1767.67 t eq-CO2 equivalent to the atmosphere, while in 2020 a significant reduction in emissions was recorded with a total of 1213.71 t eq-CO2. Prior to the pandemic, 21% of workers traveled on foot, 20% by bus and 46% in their own petrol cars, while 54% of workers traveled alone, contributing more to emissions per capita. During the pandemic, the mobility choices varied with more percentage of employees (32%) walking to the office, less (10%) travelling by bus and similar (43%) in their own petrol cars; furthermore, the percentage of workers travelling unaccompanied in their own cars increased to 64%. Overall, the mobility with private vehicles of employees and that of GADMUR were the main emitters of greenhouse gases in the institution. The prioritized measures to reduce emissions were (a) renew vehicles older than 30 and 20 years within the fleet of GADMUR; (b) implement shared transportation routes for employees, considering the info obtained from the maps, through the development of an app and non-monetary incentives.

  • References

    1. Alarcón, P., & Sarria, A. (2021). Estimación de la huella de carbono de la producción farmacéutica en la Empresa Laboratorios AC FARMA SA, Periodo 2020. Lima: Universidad César Vallejo.
    2. Alvarez, S., Tobarra, M. A., & Zafrilla, J. E. (2019). Corporate and product carbon footprint under compound hybrid analysis: application to a Spanish timber company. Journal of Industrial Ecology, 23(2), 496-507.
    3. Arroyo M, F. R., & Miguel, L. J. (2019b). The trends of the energy intensity and CO2 emissions related to final energy consumption in Ecuador: scenarios of national and worldwide strategies. Sustainability, 12(1), 20.
    4. Arroyo, F., & Miguel, L. J. (2019a). Analysis of energy demand scenarios in Ecuador: National government policy perspectives and global trend to reduce CO2 emissions. International Journal of Energy Economics and Policy, 9(2), 364.
    5. Bačėninaitė, D., Džermeikaitė, K., & Antanaitis, R. (2022). Global warming and dairy cattle: How to control and reduce methane emission. Animals, 12(19), 2687.
    6. Barrientos, E. (2021). Determinación de la huella de carbono del consumo de combustible líquido de la rmpresa transportes Cruz Del Sur SAC en Lima de los Años 2019-2021. Lima: Universidad César Vallejo.
    7. Benatar, S. R. (2022). COVID-19, global health and climate change: Causes and convergences. South African Journal of Science, 118(11-12), 1-7.
    8. Beyond Petroleum. (2019). Statistical review of world energy. Obtenido de Statistical review of world energy 2019 68th edition: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
    9. Borja-Urbano, S., Rodríguez-Espinosa, F., Luna-Ludeña, M., & Toulkeridis, T. (2021). Valuing the Impact of Air Pollution in Urban Residence Using Hedonic Pricing and Geospatial Analysis, Evidence From Quito, Ecuador. Air, Soil and Water Research, 14, 11786221211053277.
    10. Breidenich, C., Magraw, D., Rowley, A., & Rubin, J. W. (1998). The Kyoto protocol to the United Nations framework convention on climate change. American Journal of International Law, 92(2), 315-331.
    11. Broto, V. C., & Bulkeley, H. (2013). A survey of urban climate change experiments in 100 cities. Global environmental change, 23(1), 92-102.
    12. Buenaño, E., Padilla, E., & Alcántara, V. (2021). Relevant sectors in CO2 emissions in Ecuador and implications for mitigation policies. Energy Policy, 158, 112551.
    13. Bulkeley, H., & Tuts, R. (2013). Understanding urban vulnerability, adaptation and resilience in the context of climate change. Local environment, 18(6), 646-662.
    14. Clabeaux, R., Carbajales-Dale, M., Ladner, D., & Walker, T. (2020). Assessing the carbon footprint of a university campus using a life cycle assessment approach. Journal of Cleaner Production, 273.
    15. Constitución de la República. (2008). Asamblea Nacional. Quito: Jurídica.
    16. Cornejo-Vásconez, D., Rodríguez-Espinosa, F., Guasumba, A., & Toulkeridis, T. (2022). Contrasting Effects of Air Pollution Assessment in two Areas of the Quito Metropolitan District, Ecuador. La Granja, 36(2), 98-112.
    17. Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., ... & Patterson, C. (2009). Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The lancet, 373(9676), 1693-1733.
    18. Desai, B. H. (2020). 14. United Nations Environment Programme (UNEP). Yearbook of International Environmental Law, 31(1), 319-325.
    19. Dey, S., & Mehta, N. S. (2020). Automobile pollution control using catalysis. Resources, Environment and Sustainability, 2, 100006.
    20. Fenner, A., Kibert, C., Woo, J., Morquea, S., Razkenari, M., Hakima, H., & Lu, X. (2018). The carbon footprint of buildings: A review of methodologies and applications. Renewable and Sustainable Energy Reviews, 94, 1142-1152.
    21. Filimonau, V., Archer, D., Bellamy, L., Smith, N., & Wintrip, R. (2021). The carbon footprint of a UK University during the COVID-19 lockdown. Science of the Total Environment, 756.
    22. Forster, P. M., Forster, H. I., Evans, M. J., Gidden, M. J., Jones, C. D., Keller, C. A., ... & Turnock, S. T. (2020). Current and future global climate impacts resulting from COVID-19. Nature Climate Change, 10(10), 913-919.
    23. França, D. D. A., Longo, K. M., Neto, T. G. S., Santos, J. C., Freitas, S. R., Rudorff, B. F., ... & Carvalho Jr, J. A. (2012). Pre-harvest sugarcane burning: determination of emission factors through laboratory measurements. Atmosphere, 3(1), 164-180.
    24. Frutos, R., Gavotte, L., Serra-Cobo, J., Chen, T., & Devaux, C. (2021). COVID-19 and emerging infectious diseases: The society is still unprepared for the next pandemic. Environmental research, 202, 111676.
    25. Fuertes, W., Cadena, A., Torres, J., Benítez, D., Tapia, F., & Toulkeridis, T. (2019). Data analytics on real-time air pollution monitoring system derived from a wireless sensor network. In Information Technology and Systems: Proceedings of ICITS 2019 (pp. 57-67). Springer International Publishing.
    26. Gao, Y., Gao, X., & Zhang, X. (2017). The 2 C global temperature target and the evolution of the long-term goal of addressing climate change—from the United Nations framework convention on climate change to the Paris agreement. Engineering, 3(2), 272-278.
    27. García, R., & Freire, F. (2014). Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. Journal of cleaner production, 66, 199-209.
    28. Gilfillan, D., Marland, G., Boden, T., & Andres, R. (2019). Global, Regional, and National Fossil-Fuel CO2 Emission. Boone North Carolina: Dioxide Analysis Center at Appalachian State University.
    29. Gobierno Municipal de Rumiñahui (GADMUR). (2021). Rumiñahui y gestión ambiental. Obtenido de http://www.ruminahui.gob.ec/rumi3/
    30. Guallasamin, K., & Simón Baile, D. (2018). Huella de carbono del cultivo de rosas en Ecuador comparando dos metodologías: GHG Protocol vs. PAS 2050. Letras Verdes, Revista Latinoamericana de Estudios Socioambientales, (24), 27-56.
    31. Guallasamin, W. (2017). Calculadora de huella de carbono para el cultivo de rosas comparando GHG PROTOCOL VS PAS 2050: Caso de estudio Ecoroses S.A. Sangolquí: Universidad de las Fuerzas Armadas.
    32. Guanochanga, B., Cachipuendo, R., Fuertes, W., Salvador, S., Benítez, D. S., Toulkeridis, T., ... & Meneses, F. (2019). Real-time air pollution monitoring systems using wireless sensor networks connected in a cloud-computing, wrapped up web services. In Proceedings of the Future Technologies Conference (FTC) 2018: Volume 1 (pp. 171-184). Springer International Publishing.
    33. Guayanlema, V., Espinoza, S., Ramirez, A. D., & Núñez, A. (2014). Trends and mitigation options of greenhouse gas emissions from the road transport sector in ecuador. WIT Transactions on Ecology and the Environment, 191, 933-941.
    34. Hardoy, J., & Lankao, P. R. (2011). Latin American cities and climate change: challenges and options to mitigation and adaptation responses. Current Opinion in Environmental Sustainability, 3(3), 158-163.
    35. IPCC (2014). AR5 Climate change 2014: Impacts, adaptation and vulnerability. In: https://www.ipcc.ch/report/ar5/wg2/
    36. Iriarte, A., Almeida, M. G., & Villalobos, P. (2014). Carbon footprint of premium quality export bananas: case study in Ecuador, the world's largest exporter. Science of the total environment, 472, 1082-1088.
    37. Jurić, Ž., & Ljubas, D. (2020). Comparative assessment of carbon footprints of selected organizations: The application of the enhanced bilan carbone model. Sustainability, 12(22), 9618.
    38. Kellow, A. (2006). A new process for negotiating multilateral environmental agreements? The Asia–Pacific climate partnership beyond Kyoto. Australian Journal of International Affairs, 60(2), 287-303.
    39. Keskitalo, E. C. H., Westerhoff, L., & Juhola, S. (2012). Agenda‐setting on the environment: the development of climate change adaptation as an issue in European states. Environmental Policy and Governance, 22(6), 381-394.
    40. Khoa, B. T., Hung, B. P., & Hejsalem-Brahmi, M. (2023). Qualitative research in social sciences: data collection, data analysis and report writing. International Journal of Public Sector Performance Management, 12(1-2), 187-209.
    41. Kozul-Wright, R., & Fortunato, P. (2012). International trade and carbon emissions. The European Journal of Development Research, 24, 509-529.
    42. Larsen, H., & Hertwich, E. (2010). Identifying important characteristics of municipal carbon footprints. Ecological Economics, 70(1), 60-66.
    43. Llerena, S., Arias, P., Cueva, J., Almeida, G., & Salazar, C. (2020). Identifying priority management of Ecuadorian forests based on the environmental integrated assessment. In E3S Web of Conferences (Vol. 169, p. 02015). EDP Sciences.
    44. Lombardi, M., Laiola, E., Tricase, C., & Rana, R. (2018). Toward urban environmental sustainability: the carbon footprint of Foggia's municipality. Journal of Cleaner Production, 186, 534-543.
    45. Masson, V., Zhai, P., Pörtner, H., Roberts, D., Skea, J., Shukla, P., & Waterfield, T. (2018). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of(1), 1-9.
    46. Melián, G. V., Toulkeridis, T., Pérez, N. M., Hernández, P. A., Somoza, L., Padrón, E., ... & Cordero, M. (2021). Geochemistry of water and gas emissions from Cuicocha and Quilotoa volcanic lakes, Ecuador. Frontiers in Earth Science, 9, 741528.
    47. Melo, G. (2018). Medidas de redución y mitigación de la huella de carbono en la Pontificia Universidad Católica del Ecuador. Quito: Pontificia Universidad Católica del Ecuador.
    48. Ministerio del Ambiente, Agua y Transición Ecológica (MAAE). (2016). Reporte del Inventario Nacional de Gases de Efecto Invernadero del año 2010. Quito: Ministerio de Ambiente.
    49. Ministerio del Ambiente, Agua y Transición Ecológica (MAAE). (27 de marzo de 2019). Ecuador reducirá sus emisiones de gases de efecto invernadero hasta el 2025. Obtenido de MAAE: https://www.ambiente.gob.ec/ecuador-reducira-sus-emisiones-de-gases-de-efecto-invernadero-hasta-el-2025/
    50. Ministerio del Ambiente. (18 de 12 de 2013). Factor de Emisión de C02 del Sistema Nacional Interconectado del Ecuador. Recuperado el 05 de 06 de 2017, de Ministerio del Ambiente: http://www.ambiente.gob.ec/wp-content/uploads/downloads/2014/03/Factor-de-emisi%C3%B3n-2013-Publicado.pdf
    51. Mohanty, B., Mohanty, S., Sahoo, J., & Sharma, A. (2010). Climate change: impacts on fisheries and aquaculture. Climate change and variability, 119, 978-53.
    52. Moreno Ruiz, E., Weidema, B. P., Bauer, C., Nemecek, T., Vadenbo, C. O., Treyer, K., & Wernet, G. (2013). Documentation of changes implemented in ecoinvent Data 3.0. Ecoinvent report, 5, 3.
    53. Nema, P., Nema, S., & Roy, P. (2012). An overview of global climate changing in current scenario and mitigation action. Renewable and Sustainable Energy Reviews, 16(4), 2329-2336.
    54. Padrón, E., Hernández, P. A., Toulkeridis, T., Pérez, N. M., Marrero, R., Melián, G., ... & Notsu, K. (2008). Diffuse CO2 emission rate from Pululahua and the lake-filled Cuicocha calderas, Ecuador. Journal of Volcanology and Geothermal Research, 176(1), 163-169.
    55. Parra, R. E. N. É. (2020). Contribution of Non-renewable Sources for Limiting the Electrical CO2 emission factor in Ecuador. WIT Trans. Ecol. Environ, 244, 65-77.
    56. Pérez, K. A., Lascano, P. P., Sánchez, I. M., Padilla-Almeida, O., & Toulkeridis, T. (2020, November). Evaluation of the surface temperature applied in aquaculture based on satellite images in coastal Ecuador. In Conference on Information and Communication Technologies of Ecuador (pp. 572-586). Cham: Springer International Publishing.
    57. Pérez, P. (2018). Huella de carbono de la Universidad San Francisco de Quito año 2017 y plan de mitigación de emisiones de CO2-eq. Quito: Universidad San Francisco de Quito.
    58. Pralle, S. B. (2009). Agenda-setting and climate change. Environmental Politics, 18(5), 781-799.
    59. Ramirez, A. D., Rivela, B., Boero, A., & Melendres, A. M. (2019). Lights and shadows of the environmental impacts of fossil-based electricity generation technologies: A contribution based on the Ecuadorian experience. Energy policy, 125, 467-477.
    60. Randalls, S. (2010). History of the 2ºC climate target. Wiley Interdisciplinary Reviews: Climate Change, 1(4), 598-605.
    61. Robertson, G. P., & Grace, P. R. (2004). Greenhouse gas fluxes in tropical and temperate agriculture: the need for a full-cost accounting of global warming potentials. Tropical agriculture in transition—opportunities for mitigating greenhouse gas emissions?, 51-63.
    62. Rybarczyk, Y., & Zalakeviciute, R. (2021). Assessing the COVID‐19 impact on air quality: A machine learning approach. Geophysical Research Letters, 48(4), e2020GL091202.
    63. Ryding, S. O. (1999). ISO 14042 Environmental management• Life cycle assessment• life cycle impact assessment. The International Journal of life cycle assessment, 4(6), 307-307.
    64. Sanders, A. F. (1980). 20 stage analysis of reaction processes. In Advances in Psychology (Vol. 1, pp. 331-354). North-Holland.
    65. Schäfer, A., Heywood, J. B., & Weiss, M. A. (2006). Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment. Energy, 31(12), 2064-2087.
    66. Schneider, H., & Samaniego, J. (2009). La huella del carbono en la producción, distribución y consumo de bienes y servicios. Santiago de Chile: CEPAL.
    67. Scipioni, A., Manzardo, A., Mazzi, A., & Mastrobuono, M. (2012). Monitoring the carbon footprint of products: a methodological proposal. Journal of Cleaner Production, 36, 94-101.
    68. Secretaría Nacional de Planificación (Senplades). (2017). Plan Nacional del Buen Vivir 2017-2021. Quito: Senplades.
    69. Shine, K. P. (2009). The global warming potential—the need for an interdisciplinary retrial. Climatic Change, 96(4), 467-472.
    70. Sierra, J. C. (2016). Estimating road transport fuel consumption in Ecuador. Energy Policy, 92, 359-368.
    71. Singh, A., & Purohit, B. M. (2014). Public health impacts of global warming and climate change. Peace Review, 26(1), 112-120.
    72. Singh, V. K. (2012). Climate change and its impact on agriculture: a review. International Journal of Agriculture, Environment and Biotechnology, 5(3), 297-302.
    73. Stewart, R. B., Oppenheimer, M., & Rudyk, B. (2013). A new strategy for global climate protection. Climatic change, 120, 1-12.
    74. Subramanian, K. A., Singal, S. K., Saxena, M., & Singhal, S. (2005). Utilization of liquid biofuels in automotive diesel engines: an Indian perspective. Biomass and bioenergy, 29(1), 65-72.
    75. Torres, B., Andrade, V., Heredia-R, M., Toulkeridis, T., Estupiñán, K., Luna, M., ... & García, A. (2022). Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon. Sustainability, 14(17), 10738.
    76. Torres, B., Cayambe, J., Paz, S., Ayerve, K., Heredia-R, M., Torres, E., ... & García, A. (2022). Livelihood Capitals, Income Inequality, and the Perception of Climate Change: A Case Study of Small-Scale Cattle Farmers in the Ecuadorian Andes. Sustainability, 14(9), 5028.
    77. Toulkeridis, T., Seqqat, R., Arias, M. T., Salazar-Martinez, R., Ortiz-Prado, E., Chunga, S., ... & Debut, A. (2022). Volcanic Ash as a precursor for SARS-CoV-2 infection among susceptible populations in Ecuador: A satellite Imaging and excess mortality-based analysis. Disaster Medicine and Public Health Preparedness, 16(6), 2499-2511.
    78. Toulkeridis, T., Seqqat, R., Torres A, M., Ortiz-Prado, E., & Debut, A. (2020). COVID-19: Pandemic in Ecuador: a health disparities perspective. Revista de Salud Pública, 22(3).
    79. Toulkeridis, T., Tamayo, E., Simón-Baile, D., Merizalde-Mora, M. J., Reyes–Yunga, D. F., Viera-Torres, M., & Heredia, M. (2020). Climate Change according to Ecuadorian academics–Perceptions versus facts. LA GRANJA. Revista de Ciencias de la Vida, 31(1), 21-46.
    80. Wang, S., Wang, W., & Yang, H. (2018). Comparison of product carbon footprint protocols: case study on medium-density fiberboard in China. International journal of environmental research and public health, 15(10), 2060.
    81. Weng, C. K., & Boehmer, K. (2006). Launching of ISO 14064 for greenhouse gas accounting and verification. ISO Management Systems, 15, 14-16.
    82. WMO World Meteorological Organization (25 de noviembre de 2019). Record levels of concentration of greenhouse gases in the atmosphere are reached. In: https://news.un.org/es/story/2019/11/1465851
    83. World Bank. (2021). Emissions per capita, World Bank data. In: https://databank.worldbank.org/indicator/NY.GDP.PCAP.CD/1ff4a498/Popular-Indicators#
    84. Zalakeviciute, R., Vasquez, R., Bayas, D., Buenano, A., Mejia, D., Zegarra, R., ... & Lamb, B. (2020). Drastic improvements in air quality in Ecuador during the COVID-19 outbreak. Aerosol and Air Quality Research, 20(8), 1783-1792.
    85. Zambrano-Monserrate, M. A., & Ruano, M. A. (2020). Has air quality improved in Ecuador during the COVID-19 pandemic? A parametric analysis. Air Quality, Atmosphere & Health, 13(8), 929-938.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Simón-Baile, D., Díaz-Alquinga, A. G., Toulkeridis , T., Sinde-González, I., & Pérez, P. (2024). Carbon footprint of the Rumiñahui Municipal Palace in Andean Ecuador during 2019 and 2020: COVID effects and mitigation measures. Multidisciplinary Science Journal, (| Accepted Articles). https://doi.org/10.31893/multiscience.2025437
  • Article viewed - 190