• Abstract

    In the field of nanoparticle research, the green synthesis approach is emerging as a promising avenue, particularly for medical applications. Achyranthes aspera, a plant rich in bioactive compounds, has shown significant potential in the reduction of silver and iron nanoparticles. The validation of this synthesis process is achieved through a thorough examination using spectroscopy, scanning electron microscopy, FTIR, and EDAX techniques. The resulting iron nanoparticles exhibit distinctive properties that influence their stability and agglomeration dynamics. In terms of medicinal utility, both silver and iron nanoparticles exhibit promising antibacterial activity, with silver nanoparticles demonstrating superior effectiveness. Additionally, our investigation provides compelling evidence of anticancer efficacy, with iron nanoparticles showing superior activity against the MCF7 cell line, closely followed by silver nanoparticles. However, both types of nanoparticles exhibit limited antioxidant effectiveness, suggesting a need for further research into alternative antioxidant applications. The synthesis of silver and iron nanoparticles using A. aspera holds significant therapeutic promise, warranting detailed exploration under in vivo conditions to fully realize their medicinal potential. The comprehensive result underscores the importance of leveraging natural resources for advancing nanomedicine.

  • References

    1. Afzal, M., Zeshan, B., Ishaq, M., Batool, S., & Akmal, Z. (2021). Biochemical profiling and HPLC directed antimicrobial and antioxidant activities of Achyranthes aspera. Plant Cell Biotechnology and Molecular Biology, 19–34.
    2. Ahmad, H., Gohar, U. F., Mukhtar, H., Zia-Ul-Haq, M., Marc, R. A., Irimie, M., Marceanu, L. G., & Gavris, C. M. (2022). Achyranthes aspera extracts as adjuvants for the redressal of antibiotic resistance. Pharmaceutics, 14(10), 2219. https://doi.org/10.3390/pharmaceutics14102219
    3. Ahmad, W., Singh, V., Ahmed, S., & Nur-e-Alam, M. (2022). A comprehensive study on antibacterial, antioxidant, and photocatalytic activity of Achyranthes aspera-mediated biosynthesized Fe₂O₃ nanoparticles. Results in Engineering, 14, 100450.
    4. Alamri, A., Alkhilaiwi, F., Khan, N. U., & Tasleem, M. (2023). In silico screening and validation of Achyranthes aspera as a potential inhibitor of BRAF and NRAS in controlling thyroid cancer. Anti-Cancer Agents in Medicinal Chemistry. Advance online publication. https://doi.org/10.2174/1871520623666230607125258
    5. Arora, S., & Tandon, S. (2014). Achyranthes aspera root extracts induce human colon cancer cell (COLO-205) death by triggering the mitochondrial apoptosis pathway and S-phase cell cycle arrest. The Scientific World Journal, 2014, 129697. https://doi.org/10.1155/2014/129697
    6. Bang, J. H., & Suslick, K. S. (2007). Sonochemical synthesis of nanosized hollow hematite. Journal of the American Chemical Society, 129(8), 2242–2243.
    7. Baskoutas, S., Giabouranis, P., Yannopoulos, S. N., Dracopoulos, V., Toth, L., Chrissanthopoulos, A., & Bouropoulos, N. (2007). Preparation of ZnO nanoparticles by thermal decomposition of zinc alginate. Thin Solid Films, 515(24), 8461–8464.
    8. Devatha, C. P., Jagadeesh, K., & Patil, M. (2018). Effect of green-synthesized iron nanoparticles by Azadirachta indica in different proportions on antibacterial activity. Environmental Nanotechnology, Monitoring & Management, 9, 85–94.
    9. Fikru, A., Makonnen, E., Eguale, T., Debella, A., & Mekonnen, G. A. (2012). Evaluation of in vivo wound healing activity of methanol extract of Achyranthes aspera L. Journal of Ethnopharmacology, 143(2), 469–474.
    10. Gawande, D., Barewar, S., Taksande, J., Umekar, M., Ghule, B., Taksande, B., & Kotagale, N. (2022). Achyranthes aspera ameliorates stress-induced depression in mice by regulating neuroinflammatory cytokines. Journal of Traditional and Complementary Medicine, 12(6), 545–555. https://doi.org/10.1016/j.jtcme.2022.06.001
    11. Gupta, P. K., Chullikana, A., Rengasamy, M., Shetty, N., Pandey, V., Agarwal, V., & Majumdar, A. S. (2016). Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): Preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Research & Therapy, 18(1), 1–18.
    12. Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis (3rd ed.). Springer.
    13. Haseena, S., Shanavas, S., Duraimurugan, J., Ahamad, T., Alshehri, S. M., Acevedo, R., & Jayamani, N. (2020). Study on photocatalytic and antibacterial properties of phase-pure Fe₂O₃ nanostructures synthesized using Caralluma fimbriata and Achyranthes aspera leaves. Optik, 203, 164047.
    14. Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 801–804.
    15. Jaisankar, A. I., & Rajeshkumar, S. (2022). Anti-cariogenic and anti-inflammatory activity of Achyranthes aspera-mediated silver nanoparticles. International Journal of Early Childhood Special Education, 14(5).
    16. Khan, N., Akhtar, M. S., Khan, B. A., Braga, V. de A., & Reich, A. (2015). Anti-obesity, hypolipidemic, antioxidant, and hepatoprotective effects of Achyranthes aspera seed saponins in high-cholesterol-fed albino rats. Archives of Medical Science: AMS, 11(6), 1261–1271. https://doi.org/10.5114/aoms.2015.56353
    17. Kumar, K. M., Mandal, B. K., Kumar, K. S., Reddy, P. S., & Sreedhar, B. (2013). Bio-based green method to synthesize palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 102, 128–133.
    18. Luo, F., Chen, Z., Megharaj, M., & Naidu, R. (2014). Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Advances, 4(96), 53467–53474. https://doi.org/10.1039/c4ra08808e
    19. Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of the Total Environment, 445, 1–8.
    20. Markova, Z., Novak, P., Kaslik, J., Plachtova, P., Brazdova, M., Jancula, D., Siskova, K. M., Machala, L., Marsalek, B., Zboril, R., & Varma, R. (2014). Iron (II, III)-polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact. ACS Sustainable Chemistry & Engineering, 2(7), 1674–1680.
    21. Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., & Pugalenthi, V. (2014). Green-synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum. Applied Biochemistry and Biotechnology, 173(1), 318–331. https://doi.org/10.1007/s12010-014-0843-0
    22. Patra, J. K., & Baek, K. H. (2017). Green biosynthesis of magnetic iron oxide (Fe₃O₄) nanoparticles using aqueous extracts of food processing wastes under photo-catalyzed conditions and investigation of their antimicrobial and antioxidant activity. Journal of Photochemistry and Photobiology B, 173, 291–300. https://doi.org/10.1016/j.jphotobiol.2017.05.045
    23. Patra, J. K., Ali, M. S., Oh, I. G., & Baek, K. H. (2017). Proteasome inhibitory, antioxidant, and synergistic antibacterial and anticandidal activity of green biosynthesized magnetic Fe₃O₄ nanoparticles using the aqueous extract of corn (Zea mays L.) ear leaves. Artificial Cells, Nanomedicine, and Biotechnology, 45(2), 349–356. https://doi.org/10.3109/21691401.2016.1153484
    24. Perumal, P., & Saravanabhavan, K. (2018). Antidiabetic and antioxidant activities of ethanolic extract of Piper betle L. leaves in catfish, Clarias gariepinus. Asian Journal of Pharmaceutical and Clinical Research, 11(3), 194–198.
    25. Peter Amaladhas, T., Usha, M., & Naveen, S. (2013). Sunlight-induced rapid synthesis and kinetics of silver nanoparticles using leaf extract of Achyranthes aspera L. and their antimicrobial applications. Advanced Materials Letters, 4(10), 779–785.
    26. Sharma, A., Mishra, M., Dagar, V. S., & Kumar, S. (2022). Morphological and physiological changes induced by Achyranthes aspera-mediated silver nanocomposites in Aedes aegypti larvae. Frontiers in Physiology, 13, 1031285. https://doi.org/10.3389/fphys.2022.1031285
    27. Singh, R. K., Verma, P. K., Kumar, A., Kumar, S., & Acharya, A. (2021). Achyranthes aspera L. leaf extract induced anticancer effects on Dalton's lymphoma via regulation of PKCα signaling pathway and mitochondrial apoptosis. Journal of Ethnopharmacology, 274, 114060. https://doi.org/10.1016/j.jep.2021.114060
    28. Tuyet Lan, H. T., Mai, N. T., Mai Anh, B. T., Dung, D. T., Van Kiem, P., & Huu Tai, B. (2023). Four new flavonoid C-glycosides isolated from Achyranthes aspera and their nitric oxide production inhibitory activities. Chemistry & Biodiversity, 20(8), e202300853. https://doi.org/10.1002/cbdv.202300853
    29. Viswanatha, G. L., Venkataranganna, M. V., Prasad, N. B. L., & Godavarthi, A. (2017). Achyranthes aspera attenuates epilepsy in experimental animals: Possible involvement of GABAergic mechanism. Metabolic Brain Disease, 32(3), 867–879. https://doi.org/10.1007/s11011-017-9981-8
    30. Warrier, P. K., Nambier, V. P. K., & Raman Kutty, C. (1994). Indian medicinal plants: A compendium of 500 species. Orient Longman Ltd.
    31. Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Shrivastava, A., Kolla, V., Singh, R. K., Dwivedi, S. P., & Gore, D. (2025). <em>Achyranthes aspera</em> -mediated reduction of silver and iron nanoparticles for therapeutic applications. Multidisciplinary Science Journal, 7(7), 2025329. https://doi.org/10.31893/multiscience.2025329
  • Article viewed - 396
  • PDF downloaded - 173