• Abstract

    This study presents a comparative analysis of the phytochemical compositions of the flowers and fruits of Capparis spinosa L. (Flora Iraq) sourced from Basra, southern Iraq. Soxhlet extraction and maceration methods were employed to prepare extracts for comparative phytochemical yield assessment. Total phenolic and flavonoid contents were quantified using standard controls via spectroscopic analysis. Additionally, high-performance liquid chromatography (HPLC) facilitated the identification and quantification of specific antioxidants, including cinnamic acid. Comparative analysis revealed significantly higher levels of phenols, flavonoids, and alkaloids in the flowers of C. spinosa compared to the fruits. HPLC profiling highlighted the presence of essential bioactive compounds such as kaempferol, quercetin, hexaoxane, vitamin E, and stigmasterol in both flower and fruit extracts. This study marks the first comprehensive report on HPLC profiles and quantification of prominent phytochemicals in C. spinosa (Flora Iraq) flowers and fruits from Basra, Iraq. The findings provide fundamental insights into the phytochemical compositions, serving as a valuable resource for future pharmacological research and the quality control of C. spinosa materials from this specific region.

  • References

    1. ABDUL-JABAR, R. A., AL-FADAL, S. A. M., & HAMEED, B. J. (2020). THE ANTIOXIDANT AND DNA DAMAGE PROTECTION ACTIVITY OF Hibiscus sabdariffa L. Plant Cell Biotechnology and Molecular Biology, 10-23.
    2. Abubakar, A. R., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of pharmacy & bioallied sciences, 12(1), 1.
    3. Acta, C. (1978). vanadium extraction by BPHA derivatives ; Tandon and Gupta [ 8 ] have Most of the work done on BPHA derivatives has involved substitution in Preparation of BPHA derivatives, 98, 349–356.
    4. Al-Majeed, M. I. A., Al-Ghizawi, G. J., Al-Azzawi, B. H., & Al-Maliki, A. D. M. (2016). Isolation and Identification of Alkaloidic Extract of Capparis spinosaL Buds and Study of Its Cytoxicity and Antibacterial Activity. Journal of Natural Sciences Research, 6(6), 122–130.
    5. Al-saeed, A. H. M. (2019). Chemical Content and Antibacterial Activity of Some Extracts of Anastatica hierochuntica leaves. University of Thi-Qar Journal of Science, 4(1), 84–90. https://doi.org/10.32792/utq/utjsci/vol4/1/2
    6. Donno, D., Mellano, M. G., Gamba, G., Riondato, I., & Beccaro, G. L. (2020). Analytical Strategies for Fingerprinting of Antioxidants, Nutritional Substances, and Bioactive Compounds in Foodstuffs Based on High Performance Liquid Chromatography–Mass Spectrometry: An Overview. Foods, 9(12), 1734. https://doi.org/10.3390/foods9121734
    7. Essam, F., Aldoghachi, H., Mohamad, U., Almousawei, N., & Shari, F. H. (2022). In vitro anticancer activity of RA extracts of peppermint leaves against human cancer breast and cervical cancer cells, 45(01), 3467–3479.
    8. Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S. R. (2018). Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01639
    9. Ingle, K. P., Deshmukh, A. G., Padole, D. A., Dudhare, M. S., Moharil, M. P., & Khelurkar, V. C. (2017). Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. Journal of Pharmacognosy and Phytochemistry, 6(1), 32-36.
    10. Isagaliev, M., Abakumov, E., Turdaliev, A., Obidov, M., Khaydarov, M., Abdukhakimova, K., Shermatov, T., & Musaev, I. (2022). Capparis spinosa L. Cenopopulation and Biogeochemistry in South Uzbekistan. Plants, 11(13), 1628. https://doi.org/10.3390/plants11131628
    11. Mahmoud, G. S., Raghed H. Rashed, Lazim, A. J., & Mohammed, H. A. (2022). The Effects of Capparis Spinosa Leaves on The Histological Findings Associated With The Exposure of Mice to Trichloroacetic Acid. Al-Salam Journal for Biochemical and Medical Science, 18–25. https://doi.org/10.55145/ajbms.2022.1.1.004
    12. Maurya, S., Cornejo, X., Lee, C., Kim, S.-Y., Hai, D. Van, & Choudhary, R. K. (2023). Molecular phylogenetic tools reveal the phytogeographic history of the genus Capparis L. and suggest its reclassification. Perspectives in Plant Ecology, Evolution and Systematics, 58, 125720. https://doi.org/10.1016/j.ppees.2023.125720
    13. Noaema, A. H., Sawicka, B., Kiełtyka-Dadasiewicz, A., Skiba, D., & Krochmal-Marczak, B. (n.d.). Charakterystyka wybranych roślin leczniczych pochodzących z Iraku Characteristics of selected medicinal plants from Iraq. 45–58.
    14. Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
    15. Porras, G., Chassagne, F., Lyles, J. T., Marquez, L., Dettweiler, M., Salam, A. M., Samarakoon, T., Shabih, S., Farrokhi, D. R., & Quave, C. L. (2021). Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chemical Reviews, 121(6), 3495–3560. https://doi.org/10.1021/acs.chemrev.0c00922
    16. Rani, J., Kapoor, M., Dhull, S. B., Goksen, G., & Jurić, S. (2023). Identification and Assessment of Therapeutic Phytoconstituents of Catharanthus roseus through GC-MS Analysis. Separations, 10(6), 340. https://doi.org/10.3390/separations10060340
    17. Saleem, M., Nazir, M., Ali, M. S., Hussain, H., Lee, Y. S., Riaz, N., & Jabbar, A. (2010). Antimicrobial natural products: an update on future antibioticdrug candidates. Nat. Prod. Rep., 27(2), 238–254. https://doi.org/10.1039/B916096E
    18. Sher, H., Bussmann, R. W., Hart, R., & de Boer, H. J. (2016). Traditional use of medicinal plants among Kalasha, Ismaeli and Sunni groups in Chitral District, Khyber Pakhtunkhwa province, Pakistan. Journal of Ethnopharmacology, 188, 57–69. https://doi.org/10.1016/j.jep.2016.04.059
    19. Shi, L., Zhao, W., Yang, Z., Subbiah, V., & Suleria, H. A. R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112-81129.
    20. Sonbol, H. S., Hosawi, S. B., & Hosawi, M. B. (2023). GC-MS analysis of the bioactive phytochemical compounds with anticancer activity in the Capparis cartilaginea fruit extracts. Journal of Advanced Pharmacy Education and Research, 13(2), 64–70. https://doi.org/10.51847/JgGx9yY998
    21. Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D.-V. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: a review. Environmental Chemistry Letters, 19(4), 3409–3443. https://doi.org/10.1007/s10311-021-01217-8
    22. Sulaiman, N., Aziz, M. A., Stryamets, N., Mattalia, G., Zocchi, D. M., Ahmed, H. M., Manduzai, A. K., Shah, A. A., Faiz, A., Sõukand, R., Polesny, Z., & Pieroni, A. (2023). The Importance of Becoming Tamed: Wild Food Plants as Possible Novel Crops in Selected Food-Insecure Regions. Horticulturae, 9(2), 171. https://doi.org/10.3390/horticulturae9020171
    23. Sun, Y., Yang, T., & Wang, C. (2023). Capparis spinosa L. as a potential source of nutrition and its health benefits in foods: A comprehensive review of its phytochemistry, bioactivities, safety, and application. Food Chemistry, 409, 135258. https://doi.org/10.1016/j.foodchem.2022.135258
    24. Tambun, R., Alexander, V., & Ginting, Y. (2021). Performance comparison of maceration method, soxhletation method, and microwave-assisted extraction in extracting active compounds from soursop leaves (Annona muricata): A review. IOP Conference Series: Materials Science and Engineering, 1122(1), 012095. https://doi.org/10.1088/1757-899x/1122/1/012095
    25. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, 9(10), 2041. https://doi.org/10.3390/microorganisms9102041
    26. Wang, M., Wichienchot, S., He, X., Fu, X., Huang, Q., & Zhang, B. (2019). In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends in Food Science & Technology, 88, 1–9. https://doi.org/10.1016/j.tifs.2019.03.005
    27. Zhang, H., & Ma, Z. F. (2018). Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients, 10(2), 116.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Malque Publishing

How to cite

Neamaa, M. A. M., Dawood, Y. A. H., & Alsaa, H. N. (2024). Exploring the photochemical composition of indigenous Capparis Genus species in Iraq. Multidisciplinary Science Journal, 6(9), 2024179. https://doi.org/10.31893/multiscience.2024179
  • Article viewed - 378
  • PDF downloaded - 364