• Abstract

    Dual-purpose cows (n=648) from different genetic group (European, Zebu and crossbreeds cattle) were transferred with embryos produced in-vitro, in fresh or thawed, with the purpose of analyzing the effects of heatwaves on the pregnancy rate (PR) before, during, and after the transfer. The weather data used (temperature and humidity) were obtained on-site in production units to determine the temperature-humidity index (THI), and it was established that THI values of ≥74 before (-4, -3 and -2 days), during (-1, 0 and +1), and after (+2, +3 and +4) the transfer constitute a heatwave, with day “0” being the transfer day. The 2K contingency table was used, with a xi2 distribution and logistic regression (Statistica, v10), to find the PR in the recipient cows. The intrinsic variables considered were the corpus luteum size (CL1, CL2 and CL3), body condition, parity, and genetic group; while the extrinsic variables were the geographical area, embrionary development stage, embryo preservation method and quality. The presence of a heatwave before, during and after the transfer lowered the PR by 13% (p< 0.05), with it being 43% in conditions of thermal comfort, and 30% during a heatwave, the odd ratio was 0.6404 - 0.4652. The PR was lower in the presence of a heatwave across the three genetic groups (30.09, 33.33 and 35.20% by Zebu, European, and crossbreeds cattle, respectively), as well as in cows with smaller CL (CL3, 29.38%). Body condition, parity and embrionary development stage were not associated with the heatwave (p>0.05). Thawed embryos are more susceptible to heatwaves, their PR being lower (16.81%). It was concluded that the heatwave lowered the PR of the recipient cows by 13%.

  • References

    1. Abdulkadir, K., Gülnaz, M., Ebru, B., Baris, G., Abdülkadir, O., Hayrettin, O., & Ahmet, G. (2016). The effect of ovulatory follicle size at the time of insemination on pregnancy rate in lactating dairy cows. Turkish Journal of Veterinary & Animal Sciences, 40(1), 68-74. https://doi.org/10.3906/vet-1506-59
    2. Alkan, H., Karaşahin, T., Dursun, Ş., Satılmış, F., Erdem, H., & Güler, M. (2020). Evaluation of the factors that affect the pregnancy rates during embryo transfer in beef heifers. Reproduction in Domestic Animals, 55(4), 421–428. https://doi.org/10.1111/rda.13623
    3. Al-Katanani, Y. M., Paula-Lopes, F. F., & Hansen, P. J. (2002). Effect of season and exposure to heat stress on oocyte competence in Holstein cows. Journal of Dairy Sciences, 85(2), 390–396. https://doi.org/10.3168/jds.s0022-0302(02)74086-1
    4. Bailey, T., Sheets, J., McClary, D., Smith, S., & Bridges, A. (2016). Heat abatement. Elanco Dairy Business Unit. https://assets.ctfassets.net
    5. Baruselli, P. S., Ferreira, R. M., Filho, M. F. S., Nasser, L. F. T., Rodrigues, C. A., & Bó, G. A. (2010). Bovine embryo transfer recipient synchronisation and management in tropical environments. Reproduction and Fertility Development, 22(1), 67–74. https://doi.org/10.1071/RD09214
    6. Beck, H., Zimmermann, N., McVicar, T., et al. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sciences Data, 5, 180214. https://doi.org/10.1038/Sdata.2018.214
    7. Boni, R. (2019). Heat stress, a serious threat to reproductive function in animals and humans. Molecular Reproduction and Development, 86(10), 1307–1323. https://doi.org/10.1002/mrd.23123
    8. Bridges, P. J., Brusie, M. A., & Fortune, J. E. (2005). Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domestic Animals Endocrinology, 29(3), 508–522. https://doi.org/10.16/j.domaniend.2005.02.017
    9. Darbaz, I., Sayiner, S., Ergene, O., Seyrek, I. K., Zabitler, F., Evci, E. C., & Aslan, S. (2021). The effect of comfort- and hot-period on the blood flow of corpus luteum (CL) in cows treated by an OvSynch protocol. Animals: an open access journal from MDPI, 11(8), 2272. https://doi.org/10.3390/ANI11082272
    10. Domínguez-Mancera, B., Hernández-Beltrán, A., Rodríguez-Andrade, A., Cervantes-Acosta, P., Barrientos-Morales, M., & Pinos-Rodriguez, J. M. N. (2017). Changes in Livestock Weather Security Index (Temperature Humidity Index, THI) During the Period 1917-2016 in Veracruz, Mexico. Journal of Animal Research, 7(6), 983-991. https://doi.org/10.5958/2277-940X.2017.00149.8
    11. Eberhardt, B. G., Satrapa, R. A., Capinzaiki, C. R., Trinca, L. A., & Barros, C. M. (2009). Influence of the breed of bull (Bos taurus indicus vs. Bos taurus taurus) and the breed of cow (Bos taurus indicus, Bos taurus taurus and crossbred) on the resistance of bovine embryos to heat. Animal Reproduction Science, 114(1-3), 54–61. https://doi.org/10.1016/j.anireprosci.2008.09.008
    12. Estrada-Cortés, E., Ortiz, E. W., Chebel, R. C., Jannaman, E. A., Moss, J. I., Cavallari de Castro, F., Zolini, A. M., Staples, C. R., & Hansen, P. J. (2019). Embryo and cow factors affecting pregnancy per embryo transfer for multiple-service, lactating Holstein recipients. Translational Animal Science, 3(1), 60-65. https://doi.org/10.1093/tas/txz009
    13. Fernandes, C. A., Palhao, M. P., Figueiredo, A. C., Ribeiro, J. R., Fonseca e Silva, F., & Viana, J. H. (2016). Weight gain potential affects pregnancy rates in bovine embryo recipients raised under pasture conditions. Tropical Animal Health and Production, 48(1), 103–107. https://doi.org/10.1007/s11250-015-0926-0
    14. García-Ispierto I, López-Gatius F, Santolaria P, Yániz JL, Nogareda C, López-Béjar M & De Rensis F (2006). Relationship between heat stress during the peri- Implantation period and early fetal loss in dairy cattle. Theriogenology, 65(4), 799–807. https://doi.org/10.1016/j.theriogenology.2005.06.011
    15. García-Ispierto, I., López-Gatius, F., Bech-Sabat, G., Santolaria, P., Yániz, J. L., Nogareda, C., De Rensis, F., & López-Béjar, M. (2007). Climate factors affecting conception rate of high producing dairy cows in northeastern Spain. Theriogenology, 67(8), 1379–1385. https://doi.org/10.1016/j.theriogenology.2007.02.009
    16. Galina, C. S., & Geffroy, M. (2023). Dual-Purpose Cattle Raised in Tropical Conditions: What Are Their Shortcomings in Sound Productive and Reproductive Function? Animals, 13, 2224. https://doi.org/10.3390/ani13132224
    17. Gaughan, J., & Cawdell-Smith, A. J. (2015). Impact of Climate Change on Livestock Production and Reproduction. In Climate Change Impact on Livestock: Adaptation and Mitigation; Sejian V., Gaughan J., Baumgard L., Prasad C. (Eds.); Springer: New Delhi, India. 4, 51–60. https://doi.org/10.1007/978-81-322-2265-1_4
    18. Gaughan, J. B., Mader, T. L., Holt, S. M., Sullivan, M. L., & Hahn, G. L. (2010). Assessing the heat tolerance of 17 beef cattle genotypes. International Journal of Biometeorology, 54, 617–627. https://doi.org/10.1007/s00484-009-0233-4
    19. Gaughan, J., Kreikemeier, W., & Mader, T. (2005). Hormonal growth-promotant effects on grain-fed cattle maintained under different environments. International Journal of Biometeorology, 49, 396–402. https://doi.org/10.1007/s00484-005-0254-6
    20. Gendelman, M., Aroyo, A., Yavin, S., & Roth, Z. (2010). Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction (Cambridge, England), 140(1), 73–82. https://doi.org/10.1530/REP-10-0055
    21. Granados-Rivera, L. D., Quiroz-Valiente, J., Maldonado-Jáquez, J. A., Granados-Zurita, L., Díaz-Rivera, P., & Oliva-Hernández, J. (2018). Caracterización y tipificación del sistema doble propósito en la ganadería bovina del Distrito de Desarrollo Rural 151, Tabasco, México. (Characterization and profiling of the dual-purpose system in the cattle ranching activity of Rural Development District n° 151 in Tabasco, Mexico) Acta Universitaria, 28(6), 47-57. https://doi.org/10.15174/au.2018.1916
    22. Habib, K. E., Gold, P. W., & Chrousos, G. P. (2001). Neuroendocrinology of stress. Endocrinology and Metabolism Clinics, 30(3), 695-728. https://doi.org/10.1016/S0889-8529(05)70208-5
    23. Hahn, G. L., & Mader, T. L. (1997). Heat Waves in Relation to Thermoregulation, Feeding Behaviour and Mortality of Feedlot Cattle. In Livestock Environment V, Proceedings of the Fifth International Symposium; Bottcher R. W., Hoff S. J. (Eds.). American Society of Agricultural Engineers: St. Joseph, MI, USA 1, 563-571.
    24. Hahn, G., Mader, T., Gaughan, J., Hu, Q., & Nienaber, J. (1999). Heat waves and their impacts on feedlot cattle. In: Proceedings, 15th International Society Biometeorology Congress, 11(1), 353–357.
    25. Hansen PJ (2019). Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Animal Reproduction, 16(3), 497-507. HTTPS://DOI.ORG/10.21451/1984-3143-AR2019-0053
    26. Hernández, J., Lara, D., Vázquez, D., & Retureta, A. (2019). Unidad de producción bovina con transferencia de embriones en el sur de Veracruz. (Embryo transfer in a bovine production unit located in southern Veracruz state) Revista Biológico Agropecuaria Tuxpan, 7(2), 222-232. https://doi.org/10.47808/revistabioagro.v7i2.113
    27. Hernández, A., Domínguez, B., Cervantes, P., Muñoz-Melgarejo, S., Salazar-Lizán, S., & Tejeda-Martínez, A. (2011). Temperature-humidity index (THI) 1917-2008 and future scenarios of livestock comfort in Veracruz, México. Atmósfera, 24(1), 89-102.
    28. International Embryo Transfer Society (1998). Manual of the International Embryo Transfer Society. Stringfellow, D. A., Seidel, S. M. (Eds.). USA: Ed. Savoy. 170 p.
    29. Lees, A. M., Sejian, V., Wallage, A. L., Steel, C. C., Mader, T. L., Lees, J. C., & Gaughan, J. B. (2019). The Impact of Heat Load on Cattle. Animals: an open access journal from MDPI, 9(6), 322. https://doi.org/10.3390/ani9060322
    30. Maceyka, M., Payne, S. G., Milstien, S., & Spiegel, S. (2002). Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1585(2-3), 193-201. https://doi.org/10.1016/S1388-1981(02)00341-4
    31. Mader, T. L., Gaughan, J. B., Johnson, L. J., & Hahn, G. L. (2010). Tympanic temperature in confined beef cattle exposed to excessive heat load. International Journal of Biometeorology, 54, 629–635. https://doi.org/10.1007/s00484-009-0229-0
    32. Mader, T. L. (2014). Bill E. Kunkle interdisciplinary beef symposium: animal welfare concerns for cattle exposed to adverse environmental conditions. Journal of Animal Sciences, 92(12), 5319–5324. https://doi.org/10.2527/jas.2014-7950
    33. Méndez- Cortés, V., Mora-Flores, J. S., García, S. J. A., Hernández-Mendo, O., García-Mata, R., & García-Sánchez, R. C. (2019). Tipología de productores de ganado bovino en la zona norte de Veracruz (Profile of cattle ranchers in the north of Veracruz state) Tropical and Subtropical Agroecosystems, 22, 305-314. https://doi.org/10.56369/tsaes.2723
    34. Miętkiewska, K., Kordowitzki, P., & Pareek, C. S. (2022). Effects of Heat Stress on Bovine Oocytes and Early Embryonic Development-An Update. Cells, 11(24), 4073. https://doi.org/10.3390/cells11244073
    35. Morton, J. M., Tranter, W. P., Mayer, D. G., & Jonsson, N. N. (2007). Effects of Environmental Heat on Conception Rates in Lactating Dairy Cows: Critical Periods of Exposure. Journal of Dairy Sciences, 90(5), 2271–2278. https://doi.org/10.3168/jds.2006-574
    36. Momont, P. (2020). Condition Scoring of Beef Cattle. University of Idaho, 4, 1-4.
    37. Naranjo-Gómez, J. S., Uribe-García, H. F., Herrera-Sánchez, M. P., Lozano-Villegas, K. J., Rodríguez-Hernández, R., & Rondón-Barragán, I. S. (2021). Heat stress on cattle embryo: gene regulation and adaptation. Heliyon, 7(3), e06570. https://doi.org/10.1016/j.heliyon.2021.e06570
    38. Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci., 130(1-3), 57–69. https://doi.org/10.1016/j.livsci.2010.02.011
    39. Nienabar, J., & Hahn, G. (2007). Livestock production system management responses to thermal challenges. International Journal of Biometeorology, 52, 149-157. https://doi.org/10.1007/s00484-007-0103-x
    40. Palma, G. (2008). Biotecnología de la reproducción (Reproductive biotechnology, 2nd edition). Mar del Plata: Producción Gráfica Integral. 669 p.
    41. Rocha, A., Randel, R. D., Broussard, J. R., Lim, J. M., Blair, R. M., Roussel, J. D., Godke, R. A., & Hansel, W. (1998). High environmental temperature and humidity decrease oocyte quality in Bos taurus but not in Bos indicus cows. Theriogenology, 49(3), 657–665. https://doi.org/10.1016/s0093-691x(98)00016-8
    42. Román, S. I., Ríos, A., Montaño, M., García, A., Vega, V. E., Sifuentes, A. M., Martínez, G., Vázquez, C., & Ruíz, F. de J. (2015). Mejoramiento genético de los bovinos del trópico. (Improving cattle genetics in the Tropics) In: González, E., Daválos, J. L., Rodríguez. O. (Coords.) Estado del arte sobre investigación e innovación tecnológica en ganadería bovina tropical (pp. 99-152). Mexico City: Red de investigación e innovación tecnológica para la ganadería bovina tropical & Consejo Nacional de Ciencia y Tecnología.
    43. Roth, Z., & Hansen, P. J. (2004). Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biology of Reproduction, 71(6), 1898-1906. https://doi.org/10.1095/biolreprod.104.031690
    44. Rotter, R., & van de Geijn, S. C. (1999). Climate Change effects on plant growth, crop yield and livestock. Climate Change, 43, 651–681.
    45. Rosete, F. J. V., Álvarez, G. H., Urbán, D. D., Fragoso, I. A., Asprón, P. M. A., Ríos, U. A., & Torre, S. (2021). Reproductive biotechnologies in beef cattle: five decades of research in Mexico. Revista Mexicana de Ciencias Pecuarias, 12(3), 39-78. https://doi.org/10.22319/rmcp.v12s35918
    46. Saizi, T., Mpayipheli, M., & Idowu, P. (2019). Heat tolerance level in dairy herds: a review on coping strategies to heat stress and ways of measuring heat tolerance. Journal of Animal Behaviour and Biometeorology, 7, 39–51. https://doi.org/10.31893/2318-1265jabb.v7n2p39-51
    47. Sakatani, M. (2017). Effects of heat stress on bovine preimplantation embryos produced in vitro. The Journal of Reproduction and Development, 63(4), 347–352. https://doi.org/10.1262/jrd.2017-045
    48. Schüller, L. K., Burfeind, O., & Heuwieser, W. (2014). Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology, 81(8), 1050–1057. https://doi.org/10.1016/j.theriogenology.2014.01.029
    49. Schüller, L. K., Michaelis, I., & Heuwieser, W. (2017). Impact of heat stress on estrus expression and follicle size in estrus under field conditions in dairy cows. Theriogenology, 102, 48–53. https://doi.org/10.1016/theriogenology.2017.07.004
    50. Sejian, V., Bhatta, R., Gaughan, J. B., Dunshea, F. R., & Lacetera, N. (2018). Review: Adaptation of animals to heat stress. Animal, 12(2), 431-444. https://doi.org/10.1017/s1751731118001945
    51. SIAP SAGARPA. (2022). Servicio de Información Agroalimentaria y Pesquera, Secretaría de Agricultura Ganadería y Desarrollo Rural, Pesca y Alimentación (Fishery and agri-food Information service). Mexican Secretariat of Agriculture, Livestock and Rural Development (SAGARPA). http://www.pgn.org.mx/_programs/estadistica-bis.php. Fecha de consulta 21/07/2023.
    52. StatSoft, Inc. (2011). STATISTICA (Data Analysis Software System), Version 10. http://www.statsoft.com
    53. Stringfellow, D. A., Givens, M. D., & International Embryo Transfer Society. (2010). Manual of the international embryo transfer society: a procedural guide and general information for the use of embryo transfer technology emphasizing sanitary procedures (4th ed.). International Embryo Transfer Society.
    54. Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., & Tignore, M. M. B. (Eds.). (2007). Climate Change: The Physical Science Basis. Cambridge University Press: New York, NY, USA.
    55. Souissi, W., & Bouraoui, R. (2020). Relationship between Body Condition Score, Milk Yield, Reproduction, and Biochemical Parameters in Dairy Cows. Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization. https://doi.org/10.5772/intechopen.85343
    56. Silanikove, N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestok Production Sciences, 67(1-2), 1–18. https://doi.org/10.1016/S0301-6226(00)00162-7
    57. Silva, C. F., Sartorelli, E. S., Castilho, A. C. S., Satrapa, R. A., Puelker, R. Z., Razza, E. M., Ticianelli, E. S., Eduardo, H. P., & Loureiro, B., Barros, C. M. (2013). Effects of heat stress on development, quality and survival of Bos indicus and Bos taurus embryos produced in vitro. Theriogenology, 79(2), 351-357. https://doi.org/10.1016/j.theriogenology.2012.10.003
    58. Systat Software. (2008). SigmaPlot V11, San Jose, CA. www.systatsoftware.com
    59. Torres-Júnior, J. R., de F. A. Pires, M., de Sá, W. F., de M. Ferreira, A., Viana, J. H., Camargo, L. S., Ramos, A. A., Folhadella, I. M., Polisseni, J., de Freitas, C., Clemente, C. A., de Sá Filho, M. F., Paula-Lopes, F. F., & Baruselli, P. S. (2008). Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology, 69(2), 155–166. https://doi.org/10.1016/j.theriogenology.2007.06.023
    60. Takahashi, M. (2011). Heat stress on reproductive function and fertility in mammals. Reproductive Medicine and Biology, 11(1), 37–47. https://doi.org/10.1007/s12522-011-0105-6
    61. Vidal-Zepeda, R. (2005). Las Regiones Climáticas de México. Instituo de Geografía UNAM. Pp. 210
    62. West, J. W. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86(6), 2131-2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X
    63. Wilson, S. J., Kirby, C. J., Koenigsfeld, A. T., Keisler, D. H., & Lucy, M. C. (1998). Effects of Controlled Heat Stress on Ovarian Function of Dairy Cattle. 2. Heifers. Journal of Dairy Sciences, 81, 2132–2138. https://doi.org/103168/jds.s0022-0302(98)75789-3
    64. Wolfenson, D., & Roth, Z. (2018). Impact of heat stress on cow reproduction and fertility, Animal Frontiers, 9(1), 32–38. https://doi.org/10.1093/af/vfy027

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Multidisciplinary Science Journal

How to cite

Zavaleta-Martínez, A., Barrientos-Morales, M., Alpirez-Mendozaa, M., Rodríguez-Andrade, A., Cervantes-Acosta, P., Hernández-Beltrán, A., Avesaño-Reyes, L., & Dominguez-Mancera, B. (2024). Effect of heatwaves on the pregnancy rate of dual-purpose recipient cows transferred with produced in-vitro embryos in tropical locations. Multidisciplinary Science Journal, 6(7), 2024103. https://doi.org/10.31893/multiscience.2024103
  • Article viewed - 398
  • PDF downloaded - 254