• Abstract

    The majority of surface irrigation schemes are diverse in character, consisting of a diversity of crops and soils as well as a huge network of canals with varying qualities (design capacities, efficiencies, command area, length, duration of operation, etc.). The programmes in semiarid and arid locations are similarly related to limited water supplies and operate on a rotating water distribution system. As a result, managing irrigation in such settings is tough. It demands decisions on how much water and space should be allotted to different crops grown on different soils and in different areas or regions of the scheme (the allocation plan), based on water availability, benefit maximisation, varied needs, and the physical boundaries of the scheme. The current study focuses on the use of genetic algorithms (GA) in irrigation planning. In India, the GA technique is being used to create an effective farming plan for an irrigation project. Constraints include land and water limitations, as well as crop and storage limits. The model is run for various choices of population, generations, cross-over, and mutation probabilities to determine GA parameters. The results of GA are compared to those of linear programming. This case study is about a problem with linear constraints that was addressed using a genetic algorithm. The model's future use will be to address issues with non-linear constraints. Traditional nonlinear programming approaches become difficult and time-intensive in such instances. Future research is being conducted to improve the efficiency and usability of these artificial intelligence systems.

  • References

    1. Mellouli, A., Mellouli, R., & Masmoudi, F. (2019). An Innovative Genetic Algorithm for a Multi-Objective Optimization of Two-Dimensional Cutting-Stock Problem. Applied Artificial Intelligence, 33(6). https://doi.org/10.1080/08839514.2019.1583857
    2. Khoshnevisan, B., Bolandnazar, E., Shamshirband, S., Shariati, H. M., Anuar, N. B., & Kiah, M. L. M. (2015). Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. Journal of Cleaner Production, 86, 67-77. https://doi.org/10.1016/j.jclepro.2014.08.062
    3. Namazzi, C., Sserumaga, J. P., Mugerwa, S., Kyalo, M., Mutai, C., Mwesigwa, R., Djikeng, A., & Ghimire, S. (2020). Genetic Diversity and Population Structure of Brachiaria (syn. Urochloa) Ecotypes from Uganda. Agronomy, 10(8), 1193. https://doi.org/10.3390/agronomy10081193
    4. Kumar, D. N., Raju, K. S., & Ashok, B. (2006). Optimal Reservoir Operation for Irrigation of Multiple Crops Using Genetic Algorithms. Journal of Irrigation and Drainage Engineering, 132(2). https://doi.org/10.1061/(ASCE)0733-9437(2006)132:2(123)
    5. Ayan, E., Erbay, H., & Varçın, F. (2020). Crop pest classification with a genetic algorithm-based weighted ensemble of deep convolutional neural networks. Computers and Electronics in Agriculture, 179, 105809. https://doi.org/10.1016/j.compag.2020.105809
    6. Avramidou, E. V., Koubouris, G. C., Petrakis, P. V., Lambrou, K. K., Metzidakis, I. T., & Doulis, A. G. (2020). Classification Binary Trees with SSR Allelic Sizes: Combining Regression Trees with Genetic Molecular Data in Order to Characterize Genetic Diversity between Cultivars of Olea europaea L. Agronomy, 10, 1662. https://doi.org/10.3390/agronomy10111662
    7. Ghasemi, M. M., Karamouz, M., & Shui, L. T. (2016). Farm-based cropping pattern optimization and conjunctive use planning using piece-wise genetic algorithm (PWGA): a case study. Earth Syst. Environ., 2, 25. https://doi.org/10.1007/s40808-016-0076-z
    8. Perea, R. G., Poyato, E. C., Montesinos, P., et al. (2016). Optimization of Irrigation Scheduling Using Soil Water Balance and Genetic Algorithms. Water Resour Manage, 30, 2815–2830. https://doi.org/10.1007/s11269-016-1325-7
    9. Azamathulla, H. M., Wu, F. C., Ghani, A. A., Narulkar, S. M., Zakaria, N. A., & Chang, C. K. (2008). Comparison between genetic algorithm and linear programming approach for real time operation. Journal of Hydro-environment Research, 2(3), 172-181. https://doi.org/10.1016/j.jher.2008.10.001
    10. Villa, I. R., Rodríguez, J. B. M., Molina, J. L., & Tarragó, J. C. P. (2018). Multiobjective Optimization Modeling Approach for Multipurpose Single Reservoir Operation. Water, 10(4), 427. https://doi.org/10.3390/w10040427
    11. Raju, K. S., & Kumar, D. N. (2004). Irrigation Planning using Genetic Algorithms. Water Resources Management, 18(2), 163–176. https://doi.org/10.1023/B:WARM.0000024738.72486.b2
    12. Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimed Tools Appl, 80, 8091–8126. https://doi.org/10.1007/s11042-020-10139-6
    13. Munankarmi, N. N., Rana, N., Bhattarai, T., Shrestha, R. L., Joshi, B. K., Baral, B., & Shrestha, S. (2018). Characterization of the Genetic Diversity of Acid Lime (Citrus aurantifolia (Christm.) Swingle) Cultivars of Eastern Nepal Using Inter-Simple Sequence Repeat Markers. Plants, 7(2), 46. https://doi.org/10.3390/plants7020046
    14. Nicklow, J. W., Ozkurt, O., & Bringer, J. A. (2003). Control of Channel Bed Morphology in Large-Scale River Networks using a Genetic Algorithm. Water Resources Management, 17, 113–132. https://doi.org/10.1023/A:1023609806431
    15. Digna, R. F., Castro-Gama, M. E., Van der Zaag, P., Mohamed, Y. A., Corzo, G., & Uhlenbrook, S. (2018). Optimal Operation of the Eastern Nile System Using Genetic Algorithm, and Benefits Distribution of Water Resources Development. Water, 10(7), 921. https://doi.org/10.3390/w10070921
    16. Pereira, R. M. S., Lopes, S. O., Costa, M. F. P., Haie, N., & Fontes, F. A. C. C. (2022). Modelling of smart irrigation with replan and redistribution algorithms. Journal of Sustainable Development of Energy, Water and Environment Systems, 10(3), 1090409. https://doi.org/10.13044/j.sdewes.d9.0409
    17. Choudhari, S. A., Kumbhalkar, M. A., Bhise, D. V., & Sardeshmukh, M. M. (2022). Optimal Reservoir Operation Policy Determination for Uncertainty Conditions. 3C Empresa, 11(2), 277-295. https://doi.org/10.17993/3cemp.2022.110250.277-295
    18. Kuo, S. F., Merkley, G. P., & Liu, C. W. (2000). Decision support for irrigation project planning using a genetic algorithm. Agricultural Water Management, 45(3), 243-266. https://doi.org/10.1016/S0378-3774(00)00081-0
    19. Sadati, S. K., Speelman, S., Sabouhi, M., Gitizadeh, M., & Ghahraman, B. (2016). Optimal Irrigation Water Allocation Using a Genetic Algorithm under Various Weather Conditions. Water, 6(10), 3068-3084. https://doi.org/10.3390/w6103068
    20. Jain, S., Ramesh, D., & Bhattacharya, D. (2021). A multi-objective algorithm for crop pattern optimization in agriculture. Applied Soft Computing, 112, 107772. https://doi.org/10.1016/j.asoc.2021.107772
    21. Patil, U. G., & Patil, S. N. (2013). Need of Evaluation of the Present Status of Environmental Conditions of Completed River Valley Projects – Jayakwadi Project a Case Study. International Journal of Recent Trends in Science and Technology, 6, 23-31.
    22. Wu, Z. Y., & Simpson, A. R. (2001). Competent genetic-evolutionary optimization of water distribution systems. J. Comp. Civil Engin. ASCE, 15, 89–101. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:2(89)
    23. Zhang, X., Chen, X., Liang, P., & Tang, H. (2018). Cataloguing Plant Genome Structural Variations. Curr. Issues Mol. Biol., 27(1), 181-194. https://doi.org/10.21775/cimb.027.181
    24. Wang, Y. (2022). Technical Research on Optimization of Irrigation Canal System Considering Genetic Algorithm. Mobile Information Systems, 2022, 1-9. https://doi.org/10.1155/2022/8687532

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Malque Publishing

How to cite

Choudhari, S. A., Kumbhalkar, M. A., Sardeshmukh, M. M., & Bhise, D. V. (2024). Irrigation planning for development of an effective cropping pattern using genetic algorithm. Multidisciplinary Science Journal, 6(7), 2024083. https://doi.org/10.31893/multiscience.2024083
  • Article viewed - 209
  • PDF downloaded - 115