• Abstract

    Concrete is substantially a prerequisite material being used but as the year’s pass, the concrete structures due to external load application might be subjected to the inevitable crack formation that can degrade their durability and strength. The addition of bacteria and the supplementary calcium source creates a pervious layer over concrete fissures similar to calcite precipitation in sealing pores and micro-cracks in the concrete. This review exemplifies the usage of several species of calcite-precipitating, alkali-resistant Bacillus bacteria as crack healing agents and nutrients added for bacteria sustainability in the concrete and mortar at diverse age periods. Various strategies have been proposed to endow self-healing in concrete in past decades. This review summarizes the effect of micro-capsules, hydrogels, cellulose fiber, polymers, mineral admixtures and bacteria type when employed in cementitious materials. This study exuviates light on the advantages of bio minerals produced via bacteria metabolism that improves mechanical properties, durability parameters and microstructure behaviour. It can be summarized that the inclusion of bacteria in concrete and mortar improves its properties resulting in crack healing, making it more sustainable and reducing maintenance cost. Furthermore, research can be a promising investigation into the longevity of the bacteria for its extensive practical outcome-based application.

  • References

    1. Abo Sabah SH, Anneza LH, Juki MI, Alabduljabbar H, Othman N, Al-Gheethi AA, Al-Shalif AF (2021) The use of calcium lactate to enhance the durability and engineering properties of bioconcrete. Sustain Sci 13. DOI: 10.3390/su13169269
    2. Abo-El-Enein SA, Ali AH, Talkhan FN, Abdel-Gawwad HA (2013) Application of microbial biocementation to improve the physico-mechanical properties of cement mortar. HBRC Journal 9:36-40. DOI: 10.1016/j.hbrcj.2012.10.004
    3. Achal V, Mukerjee A, Sudhakara Reddy M (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1-5. DOI: 10.1016/j.conbuildmat.2013.06.061
    4. Afifudin H, Hamidah M, Hana H, Kamaruddin K (2011) Microorganism precipitation in enhancing concrete properties. Appl Mech Mater 99:1157-1165. DOI: 10.4028/www.scientific.net/AMM.99-100.1157
    5. Algaifi HA, Bakar SA, Sam ARM, Abidin ARZ, Shahir S, AL-Towayti WAH (2018) Numerical modeling for crack self-healing concrete by microbial calcium carbonate. Constr Build Mater 189:816-824. DOI: 10.1016/j.conbuildmat.2018.08.218
    6. Andalib R, Abd Majid MZ, Hussin MW, Ponraj M, Keyvanfar A, Mirza J, Lee H-S (2016) Optimum concentration of Bacillus megaterium for strengthening structural concrete. Constr Build Mater 118:180-193. DOI: 10.1016/j.conbuildmat.2016.04.142
    7. Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28:404-409. DOI: 10.1016/S0141-0229(00)00348-3
    8. Bashir J, Kathwari I, Tiwary A, Singh K (2016) Bio concrete- the self-healing concrete. Indian J Sci Technol 9:1-5. DOI: 10.17485/ijst/2015/v8i1/105252
    9. Beveridge T (1981) Ultrastructure, chemistry, and function of the bacterial wall. Int Rev Cytol 72:229-317. DOI: 10.1016/S0074-7696(08)61198-5
    10. Bundur ZB, Amiri A, Ersan YC, Boon N, De Belie N (2017) Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability. Cem Concr Res 98:44-49. DOI: 10.1016/j.cemconres.2017.04.005
    11. Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Constr Build Mater 37:645-651. DOI: 10.1016/j.conbuildmat.2012.07.029
    12. Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater 28:351–356. DOI: 10.1016/j.conbuildmat.2011.07.042
    13. Chen H-J, Peng C-F, Tang C-W, Chen Y-T (2019) Self-healing concrete by biological substrate. Mater 12. DOI: 10.3390/ma12244099
    14. De Belie N, Van Belleghem B, Erşan YÇ, Van Tittelboom K (2019) Durability of self-healing concrete. In: Concrete Solutions -7th International Conference on Concrete Repair pp 1-8. DOI: 10.1051/matecconf/201928901003
    15. De Belie N, Wang J (2016) Bacteria-based repair and self-healing of concrete. J Sustain Cem Based Mater 5:35-56. DOI: 10.1080/21650373.2015.1077754
    16. De Muynck W, Cox K, Belie ND, Verstraete W (2008a) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22:875-885. DOI: 10.1016/j.conbuildmat.2006.12.011
    17. De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res 38:1005-1014. DOI: 10.1016/j.cemconres.2008.03.005
    18. Dong B, Han N, Zhang M, Wang X, Cui H, Xing F (2013) A microcapsule technology based self-healing system for concrete structures. J Earthq Tsunami 7:1350014. DOI: 10.1142/S1793431113500140
    19. El Enshasy H, Dailin DJ, Malek RA, Nordin NZ, Keat HC, Eyahmalay J, Ramchuran S, Chee Ghong JN, Ramdas VM, Lalloo R (2020) Biocement: A novel approach in the restoration of construction materials. In: Yadav AN, Rastegari AA, Gupta VK, Yadav N (ed) Microbial Biotechnology Approaches to Monuments of Cultural Heritage. Springer, Singapore, pp 177-198. DOI: 10.1007/978-981-15-3401-0_10
    20. Elkhateeb W, Elnahas MO, Daba G (2021) Microbial induced mineralization of calcium carbonate for self-healing concrete. Asian J Nat Prod Biochem 19:1-9. DOI: 10.13057/biofar/f190101
    21. Erşan YÇ, Da Silva FB, Boon N, Verstraete W, De Belie N (2015) Screening of bacteria and concrete compatible protection materials. Constr Build Mater 88:196-203. DOI: 10.1016/j.conbuildmat.2015.04.027
    22. Erşan YÇ, De Belie N, Boon N (2015) Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J 101:108-118. DOI: 10.1016/j.bej.2015.05.006
    23. Feng J, Chen B, Sun W, Wang Y (2021) Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization. Constr Build Mater 280:122460. DOI: 10.1016/j.conbuildmat.2021.122460
    24. Ghosh S, Biswas M, Chattopadhyay B, Mandal S (2009) Microbial activity on the microstructure of bacteria modified mortar. Cem Concr Compos 31:93-98. DOI: 10.1016/j.cemconcomp.2009.01.001
    25. Han N-X, Xing F (2017) A comprehensive review of the study and development of microcapsule based self- resilience systems for concrete structures at Shenzhen University. Mater 10:2. DOI: 10.3390/ma10010002
    26. Hearn N (1998) Self-sealing, autogenous healing and continued hydration: what is the difference? Mat Struct 31:563-567. DOI: 10.1007/BF02481539
    27. Hoffmann TD, Paine K, Gebhard S (2021) Genetic optimisation of bacteria-induced calcite precipitation in Bacillus subtilis. Microb Cell Factories 20:1-19. DOI: 10.1186/s12934-021-01704-1
    28. Huynh NNT, Phuong NM, Toan NPA, Son NK (2017) Bacillus subtilis HU58 immobilized in micropores of diatomite for using in self-healing concrete. Procedia Eng 171:598-605. DOI: 10.1016/j.proeng.2017.01.385
    29. Jeong B, Jho EH, Kim SH, Nam K (2019) Effect of calcium organic additives on the self-healing of concrete microcracks in the presence of a new isolate Bacillus sp. BY1. J Mater Civ Eng 31:04019227. DOI: 10.1061/(ASCE)MT.1943-5533.0002711
    30. Jonkers H, Schlangen E (2008) Development of a bacteria-based self-healing concrete. Tailor & Francis Group. DOI:10.1201/9781439828410.ch72
    31. Jonkers HM (2007) Self-healing concrete: A biological approach. In: van der Zwaag S (ed) Self-healing materials: an alternative approach to 20 centuries of materials science. Springer, Netherlands, Dordrecht, pp 195-204
    32. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230-235. DOI: 10.1016/j.ecoleng.2008.12.036
    33. Kessler M, Sottos N, White S (2003) Self-healing structural composite materials. Compos Part A Appl Sci Manuf 34(8):743-753. DOI: 10.1016/S1359-835X (03)00138-6
    34. Kevin Paine MA, Trupti S, Richard C, Heath A (2016) Design and performance of bacteria-based self-healing Concrete. In: the 9th International Concrete Conference, Materials Science, pp 545-554.
    35. Khaliq W, Ehsan MB (2016) Crack healing in concrete using various bio influenced self-healing techniques. Constr Build Mater 102:349-357. DOI: 10.1016/j.conbuildmat.2015.11.006
    36. Khan MBE, Shen L, Dias-da-Costa D (2021) Self-healing behaviour of bio-concrete in submerged and tidal marine environments. Constr Build Mater 277:122332. DOI: 10.1016/j.conbuildmat.2021.122332
    37. Khaudiyal S, Rawat A, Das SK, Garg N (2022) Bacterial concrete: A review on self-healing properties in the light of sustainability. Mater. Today: Proc 60:136-143. DOI: 10.1016/j.matpr.2021.12.277
    38. Li VC, Yang E-H (2007) Self -healing in concrete materials. In: van der Zwaag S (ed) Self-Healing Materials: An Alternative Approach to 20 Centuries of Materials Science. Springer, Netherlands, Dordrecht, pp 161-193.
    39. Luo M, Qian CX, Li RY (2015) Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Constr Build Mater 87:1-7. DOI: 10.1016/j.conbuildmat.2015.03.117
    40. Meera C, Subha V (2016) Strength and durability assessment of bacteria based self-healing concrete. IOSR J Mech Civ Eng pp 01-07.
    41. Metwally GA, Mahdy M, Abd El AE-RH (2020) Performance of Bio concrete by using Bacillus pasteurii bacteria. Civ Eng J 6:1443-1456. DOI: 10.28991/cej-2020-03091559
    42. Muhammad NZ, Shafaghat A, Keyvanfar A, Abd. Majid MZ, Ghoshal SK, Mohammadyan Yasouj SE, Ganiyu AA, Samadi Kouchaksaraei M, Kamyab H, Taheri MM, Rezazadeh Shirdar M, McCaffer R (2016) Tests and methods of evaluating the self-healing efficiency of concrete: A review. Constr Build Mater 112:1123-1132. DOI: 10.1016/j.conbuildmat.2016.03.017
    43. Murari K, Kaur P (2021) Development of sustainable concrete using bacteria as self-healing agent. In: Select Proceedings of SDEI 2020, Sustainable Development Through Engineering Innovations, Springer, Singapore, pp 444 693-700
    44. Osman KM, Taher FM, Abd El-Tawab A, Faried AS (2021) Role of different microorganisms on the mechanical characteristics, self-healing efficiency, and corrosion protection of concrete under different curing conditions. J Build Eng 41:102414. DOI: 10.1016/j.jobe.2021.102414
    45. Parastegari N, Mostofinejad D, Poursina D (2019) Use of bacteria to improve electrical resistivity and chloride penetration of air-entrained concrete. Constr Build Mater 210:588-595. DOI: 10.1016/j.conbuildmat.2019.03.150
    46. Prasad CVS, Lakshmi TVS (2018) Effect of Bacillus subtilis on mechanical behavior of bacterial concrete. ARPN J Eng Appl Sci 13:4873-81
    47. Priya TS, Ramesh N, Agarwal A, Bhusnur S, Chaudhary K (2019) Strength and durability characteristics of concrete made by micronized biomass silica and Bacteria-Bacillus sphaericus. Constr Build Mater 226:827-838. DOI: 10.1016/j.conbuildmat.2019.07.172
    48. Qian CX, Luo M, Ren LF, Wang RX, Li RY, Pan QF, Chen HC (2015) Self-healing and repairing concrete cracks based on bio-mineralization. In: Trans Tech Publ Ltd, Key Engineering Materials, 629:494-503. DOI: 10.4028/www.scientific.net/KEM.629-630.494
    49. Qian S, Zhou J, de Rooij MR, Schlangen E, Ye G, van Breugel K (2009) Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cem Concr Compos 31:613-621. DOI: 10.1016/j.cemconcomp.2009.03.003
    50. Rajczakowska M (2019) Self-healing concrete. Licentiate thesis, comprehensive summary, Luleå tekniska universitet.
    51. Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J, American Concrete Institute, 98(1):3-9
    52. Ramakrishnan V (2007) Performance characteristics of bacterial concrete—a smart biomaterial. In: Proceedings of the First International Conference on Recent Advances in Concrete Technology, DC: Washington, pp 67-78
    53. Roig-Flores M, Formagini S, Serna P (2021) Self-healing Concrete-What Is It Good for? Mater de Construccion 71:e237-e237. DOI: 10.3989/mc.2021.07320
    54. Ryu Y, Lee KE, Cha IT, Park W (2020) Optimization of bacterial sporulation using economic nutrient for self- healing concrete. J Microbiol 58(4):288-296. DOI: 10.1007/s12275-020-9580-y
    55. Salmasi F, Mostofinejad D (2020) Investigating the effects of bacterial activity on compressive strength and durability of natural lightweight aggregate concrete reinforced with steel fibers. Constr Build Mater 251:119032. DOI: 10.1016/j.conbuildmat.2020.119032
    56. Seifan M (2018) Self-healing concrete: a novel nanobiotechnological approach to heal the concrete cracks. Dissertation, University of Waikato, Hamilton, New Zealand
    57. Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100:2591-2602.DOI: 10.1007/s00253-016-7316-z
    58. Sierra-Beltran MG, Jonkers H, Schlangen E (2014) Characterization of sustainable bio-based mortar for concrete repair. Constr Build Mater 67:344-352. DOI: 10.1016/j.conbuildmat.2014.01.012
    59. Silva FB, Boon N, Belie ND, Verstraete W (2015) Industrial application of biological self-healing concrete: Challenges and economical feasibility. J Commer Biotechnol 21.
    60. Singh H, Gupta R (2020) Cellulose fiber as bacteria-carrier in mortar: Self-healing quantification using UPV. J Build Eng 28:101090. DOI: 10.1016/j.jobe.2019.101090
    61. Skinner H, Jahren A (2003) Biomineralization. In: Treatise on geochemistry, 2nd edn. 8:117-184
    62. Soysal A, Milla J, King GM, Hassan M, Rupnow T (2020) Evaluating the self-healing efficiency of hydrogel- encapsulated bacteria in concrete. Transp Res Rec 2674:113-123. DOI: 10.1177/0361198120917973
    63. Stanaszek-Tomal E (2020) Bacterial concrete as a sustainable building material? Sustain 12:696. DOI: 10.3390/su12020696
    64. Su Y, Feng J, Jin P, Qian C (2019) Influence of bacterial self-healing agent on early age performance of cement- based materials. Constr Build Mater 218:224-234. DOI: 10.1016/j.conbuildmat.2019.05.077
    65. Suleiman A, Nehdi M (2018) Effect of environmental exposure on autogenous self-healing of cracked cement- based materials. Cem Concr Res 111:197-208. DOI: 10.1016/j.cemconres.2018.05.009
    66. Tang Y, Xu J (2021) Application of microbial precipitation in self-healing concrete: A review on the protection strategies for bacteria. Const Build Mater 306:1-11. DOI: 10.1016/j.conbuildmat.2021.124950
    67. Tayebani B, Mostofinejad D (2019) Penetrability, corrosion potential, and electrical resistivity of bacterial concrete. J Mater Civ Eng 31:04019002. DOI: 10.1061/(ASCE)MT.1943-5533.0002618
    68. Van Breugel K (2007) Is there a market for self-healing cement-based materials. In: Proceedings of the first international conference on self-healing materials, Netherlands, pp 1-9.
    69. Van Tittelboom K, De Belie N (2013) Self-healing in cementitious materials—A review. Mater 6. DOI: 10.3390/ma6062182
    70. Vijay K, Murmu M (2020) Experimental study on bacterial concrete using Bacillus subtilis micro-organism. In: Select Proceedings of ICETCE 2018, Emerging Trends in Civil Engineering, Springer, Singapore, pp 245-252.
    71. Wang J, Ersan YC, Boon N, De Belie N (2016) Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl Microbiol Biotechnol 100(7):2993-3007. DOI: 10.1007/s00253-016-7370-6
    72. Wang J, Snoeck D, Van Vlierberghe S, Verstraete W, De Belie N (2014) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater 68:110-512 119. DOI: 10.1016/j.conbuildmat.2014.06.018
    73. Wang J, Soens H, Verstraete W, De Belie N (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cem.Concr Res 56:139-152. DOI: 10.1016/j.cemconres.2013.11.009
    74. Wang J, Van Tittelboom K, De Belie N, Verstraete W (2012) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26:532-540. DOI: 10.1016/j.conbuildmat.2011.06.054
    75. Wang J-Y, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39:567-577. DOI: 10.1007/s10295-011-1037-1
    76. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794-797. DOI: 10.1038/35057232
    77. Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33:763-770. DOI: 10.1016/j.cemconcomp.2011.03.012
    78. Xu J, Yao W (2014) Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent. Cem Concr Res 64:1-10. DOI: 10.1016/j.cemconres.2014.06.003
    79. Yıldırım G, Khiavi AH, Yeşilmen S, Şahmaran M (2018) Self-healing performance of aged cementitious composites. Cem Concr Compos 87:172-186. DOI: 0.1016/j.cemconcomp.2018.01.004
    80. Zawad MFS, Rahman MA, Priyom SN (2021) Bio-engineered concrete: a critical review. On the next generation of durable concrete. Journal of the Civil Engineering Forum Web 335-358.
    81. Zhang K, Tang CS, Jiang NJ, Pan XH, Liu B, Wang YJ (2023) Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. Environ. Earth Sci 82:229.
    82. Zheng T, Su Y, Zhang X, Zhou H, Qian C (2020) Effect and mechanism of encapsulation-based spores on self- healing concrete at different curing ages. ACS Appl Mater Interfaces 12:52415-52432. DOI: 10.1021/acsami.0c16343

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

How to cite

Palter, G. P., Syeda, M., Sambhana, K. D., Malasani, P., & Poosarla, V. G. (2023). A significant review on the performance of microbial concrete in comportment of diverse nutrients. Multidisciplinary Science Journal, 5, 2023ss0411. https://doi.org/10.31893/multiscience.2023ss0411
  • Article viewed - 475
  • PDF downloaded - 260