• Abstract

    The rapid advancement of artificial intelligence (AI) has profoundly impacted various sectors, especially finance, where it has revolutionized how investment decisions are made. A bibliometric analysis of research publications from 2015 to 2025 highlights remarkable trends, with over half (51.7%) of all studies published in just the last two years (2024–2025), underscoring the field's explosive growth. Geographically, India has emerged as the top contributor, accounting for 28% of total publications, followed by the United States, China, and the United Kingdom. The interdisciplinary nature of AI research is evident in its subject distribution: Computer Science leads with 24.8% of publications, followed by Business & Economics (19.6%), Engineering (14.3%), Decision Sciences (12.7%), Mathematics (9.8%), and other fields making up the remaining 18.8%. AI technologies, such as machine learning and data analytics, are transforming finance by enhancing portfolio management, refining risk assessment, and enabling advanced predictive analytics. These innovations facilitate more efficient, data-driven investment strategies. Using the Scopus database and VOSviewer software, this study analyzes citation networks, co-authorship patterns, and keyword co-occurrence to map the field's landscape. The findings highlight key trends in AI applications for investment decision-making, particularly in algorithmic trading, risk management, and portfolio optimization. As global financial markets grow increasingly complex, AI-driven approaches offer critical support for decision-making, presenting both opportunities and challenges for researchers and practitioners. This bibliometric study sheds light on emerging trends, influential research, and significant gaps in the field. It provides valuable insights for researchers, practitioners, and policymakers seeking to understand AI's evolving role in shaping investment strategies and decision-making frameworks.

  • References

    1. Ajibade, S. S. M., Jasser, M. B., Alebiosu, D. O., Al-Hadi, I. A. A. Q., Al-Dharhani, G. S., Hassan, F., & Gyamfi, B. A. (2024). Uncovering the Dynamics in the Application of Machine Learning in Computational Finance: A Bibliometric and Social Network Analysis. International Journal of Economics and Financial Issues, 14(4), 299–315. https://doi.org/10.32479/ijefi.16399
    2. Akour, I., Alzyoud, M., Alquqa, E. K., Tariq, E., Alzboun, N., Al-Hawary, S. I. S., & Alshurideh, M. T. (2024). Artificial intelligence and financial decisions: Empirical evidence from developing economies. International Journal of Data and Network Science, 8(1), 101–108. https://doi.org/10.5267/j.ijdns.2023.10.013
    3. Alcázar-Blanco, A. C., Rangel-Preciado, J. F., & Portillo-Santos, F. (2024). Incorporating Artificial Intelligence into Finance: A Bibliometric Analysis. Journal of Risk and Financial Management, 17(12), 1–14. https://doi.org/10.3390/jrfm17120556
    4. Artene, A. E., Domil, A. E., & Ivascu, L. (2024). Unlocking Business Value: Integrating AI-Driven Decision-Making in Financial Reporting Systems. Electronics (Switzerland), 13(15). https://doi.org/10.3390/electronics13153069
    5. Ayaz, G., & Zahid, M. (2024). Trends, shifts and prospects of sustainable finance research: a bibliometric analysis. Sustainability Accounting, Management and Policy Journal, 2010. https://doi.org/10.1108/SAMPJ-06-2022-0340
    6. Baklanova, V., Kurkin, A., & Teplova, T. (2023). Investor sentiment and the NFT hype index: to buy or not to buy? China Finance Review International, 14(3), 522–548. https://doi.org/10.1108/CFRI-06-2023-0175
    7. Chávez-Díaz, J. M., Aquiño-Perales, L., De-Velazco-Borda, J. L., Villagómez-Chinchay, J. A., & Flores-Sotelo, W. S. (2024). Artificial intelligence in accounting and auditing: bibliometric analysis in Scopus 2020-2023. Indonesian Journal of Electrical Engineering and Computer Science, 36(2), 1319–1328. https://doi.org/10.11591/ijeecs.v36.i2.pp1319-1328
    8. Dakalbab, F., Talib, M. A., Nasir, Q., & Saroufil, T. (2024). Artificial intelligence techniques in financial trading: A systematic literature review. Journal of King Saud University - Computer and Information Sciences, 36(3), 102015. https://doi.org/10.1016/j.jksuci.2024.102015
    9. Devapitchai, J. J., S. V., K., S. P., K., P., W. R., & Saranya, S. (2024). Using AI-Driven Decision-Making Tools in Corporate Investment Planning. October, 137–160. https://doi.org/10.4018/979-8-3693-5578-7.ch006
    10. Filos, A. (2019). Reinforcement Learning for Portfolio Management. http://arxiv.org/abs/1909.09571
    11. Fine, A., & Marsh, S. (2024). Judicial leadership matters (yet again): the association between judge and public trust for artificial intelligence in courts. Discover Artificial Intelligence, 4(1). https://doi.org/10.1007/s44163-024-00142-3
    12. Ghanta, S. N., Al’Aref, S. J., Lala-Trinidade, A., Nadkarni, G. N., Ganatra, S., Dani, S. S., & Mehta, J. L. (2024). Applications of ChatGPT in Heart Failure Prevention, Diagnosis, Management, and Research: A Narrative Review. Diagnostics, 14(21). https://doi.org/10.3390/diagnostics14212393
    13. Gu, F., Jiang, Z., & Su, J. (2021). Application of Features and Neural Network to Enhance the Performance of Deep Reinforcement Learning in Portfolio Management. 2021 IEEE 6th International Conference on Big Data Analytics, ICBDA 2021, March 92–97. https://doi.org/10.1109/ICBDA51983.2021.9403044
    14. Gu, J., Ye, J., Wang, G., & Yin, W. (2024). Adaptive and Explainable Margin Trading via Large Language Models on Portfolio Management. ICAIF 2024 - 5th ACM International Conference on AI in Finance, 248–256. https://doi.org/10.1145/3677052.3698681
    15. Han, X., Wang, N., Che, S., Yang, H., Zhang, K., & Xu, S. X. (2024). Unlocking Business Value: Integrating AI-Driven Decision-Making in Financial Reporting Systems. 538–546. https://doi.org/10.1145/3677052.3698645
    16. Jang, J., Kim, T., & Park, S. H. (2024). Stock Index Forecasting Using an Explainable TAFT Model with Online Data-Driven Social Sentiment Index. ICAIF 2024 - 5th ACM International Conference on AI in Finance, 787–794. https://doi.org/10.1145/3677052.3698618
    17. Katib, I., Albassam, E., Sharaf, S. A., & Ragab, M. (2024). Harnessing probabilistic neural network with triple tree seed algorithm-based smart enterprise quantitative risk management framework. Scientific Reports, 14(1), 22293. https://doi.org/10.1038/s41598-024-73876-w
    18. Koo, J. (2024). AI is not careful: approach to the stock market and preference for AI advisor. International Journal of Bank Marketing, 42(7), 2117–2142. https://doi.org/10.1108/IJBM-10-2023-0568
    19. Kruachottikul, P., Tea-makorn, P., Dumrongvute, P., Hemrungrojn, S., Nupairoj, N., Junchaya, O., & Vinayavekhin, S. (2024). MediGate: a MedTech product innovation development process from university research to successful commercialization within emerging markets. Journal of Innovation and Entrepreneurship, 13(1). https://doi.org/10.1186/s13731-024-00439-8
    20. Mergen, M., Graf, N., & Meyerheim, M. (2024). Reviewing the current state of virtual reality integration in medical education - a scoping review. BMC Medical Education, 24(1), 1–25. https://doi.org/10.1186/s12909-024-05777-5
    21. Nalule, D., Edekebon, E., Nagwovuma, M., Jjingo, D., & Marvin, G. (2024). Explainable Deep Learning Approaches to Credit Risk Evaluation. ACM International Conference Proceeding Series, 198–206. https://doi.org/10.1145/3675888.3676052
    22. Nardone, V., Marmorino, F., Germani, M. M., Cichowska-Cwalińska, N., Menditti, V. S., Gallo, P., Studiale, V., Taravella, A., Landi, M., Reginelli, A., Cappabianca, S., Girnyi, S., Cwalinski, T., Boccardi, V., Goyal, A., Skokowski, J., Oviedo, R. J., Abou-Mrad, A., & Marano, L. (2024). The Role of Artificial Intelligence on Tumor Boards: Perspectives from Surgeons, Medical Oncologists and Radiation Oncologists. Current Oncology, 31(9), 4984–5007. https://doi.org/10.3390/curroncol31090369
    23. Pamuk, M., & Schumann, M. (2024). Towards AI Dashboards in Financial Services: Design and Implementation of an AI Development Dashboard for Credit Assessment. Machine Learning and Knowledge Extraction, 6(3), 1720–1761. https://doi.org/10.3390/make6030085
    24. Patil, S. R., Jadhav, S. N., & Nimbagal, S. (2024). A study on ethical implications of using technology in ESG investing and ensuring unbiased decision making. Multidisciplinary Science Journal, 6(8). https://doi.org/10.31893/multiscience.2024153
    25. Pattnaik, D., Ray, S., & Raman, R. (2024). Applications of artificial intelligence and machine learning in the financial services industry: A bibliometric review. Heliyon, 10(1), e23492. https://doi.org/10.1016/j.heliyon.2023.e23492
    26. Qatawneh, A. M., Lutfi, A., & Al Barrak, T. (2024). Effect of Artificial Intelligence (AI) on Financial Decision-Making: Mediating Role of Financial Technologies (Fin-Tech). HighTech and Innovation Journal, 5(3), 759–773. https://doi.org/10.28991/HIJ-2024-05-03-015
    27. Sayari, K., Jannathl Firdouse, M. K., & Al Abri, F. (2025). Artificial intelligence and machine learning adoption in the financial sector: a holistic review. IAES International Journal of Artificial Intelligence, 14(1), 19–31. https://doi.org/10.11591/ijai.v14.i1.pp19-31
    28. Shahzadi, G., Jia, F., Chen, L., & John, A. (2024). AI adoption in supply chain management: a systematic literature review. Journal of Manufacturing Technology Management, 35(6), 1125–1150. https://doi.org/10.1108/JMTM-09-2023-0431
    29. Văduva, A. G., Oprea, S. V., Niculae, A. M., Bâra, A., & Andreescu, A. I. (2024). Improving Churn Detection in the Banking Sector: A Machine Learning Approach with Probability Calibration Techniques. Electronics (Switzerland), 13(22). https://doi.org/10.3390/electronics13224527
    30. van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

How to cite

Ismail Mahmoud, M., & Surwanti, A. (2025). A bibliometric study on the role of artificial intelligence in enhancing investment decision-making processes . Multidisciplinary Reviews, (| Accepted Articles). Retrieved from https://malque.pub/ojs/index.php/mr/article/view/8201
  • Article viewed - 112