• Abstract

    Microbial communities in soil are among the most diverse on earth. A healthy crop environment requires a strong link between plants and soil microorganisms, which is necessary for good crop development. Bacteria, fungi, algae, and protozoa are abundant in soil. Soil bacteria are key regulators of the nutrient cycle is. There are no plants without bacteria that can mineralize, fix nitrogen in legumes, and convert ammonia into plant-available nitrate. Effective microorganisms can help  grow and produce more crops. These bacteria performed better when used in combination with organic amendments than when used alone. In addition, they contribute to soil health and provide many ecological services. In addition to helping clean the environment, they also develop and implement sustainable closed-cycle organic waste treatment processes throughout the world and disinfect landfills. This review concludes that the application or presence of effective microbes in soil not only enhances the nutritional capacity, fertility, and productivity of soils, but also helps to remediate soil problemcosts effectively.

  • References

    1. Abdullah, M.M.A., Radzi, A.H., Saleh, N.A.M., Kamal, S.Z. & Yaacob, N.D. (2011). Production of effective microorganism using halal-based sources: A review. African Journal of Biotechnology, 10(81), 18649-18652. https://doi.org/10.5897/AJB11.2772
    2. Al-Amri, S.M. (2021). Response of growth, essential oil composition, endogenous hormones and microbial activity of Mentha piperita to some organic and biofertilizers agents, 28 10, 5435- 5441. https://doi.org/10.1016/j.sjbs.2021.06.094
    3. Al-saadi, A., Hammeed, N.M. & Jaralla, E.M. (2013). Isolation and identification of Streptomyces from different sample of soils. Journal of Biology and Medical Sciences, 1, 31-36. https://core.ac.uk/download/pdf/234690632.pdf
    4. Aryal, U.K., XU, H.L., Fujita, M. (2003). Rhizobia and AM Fungal Inoculation Improve Growth and Nutrient Uptake of Bean Plants Under Organic Fertilization. Journal of Sustainable Agriculture,21, 3. https://doi.org/10.1300/J064v21n03_04
    5. Atsbeha, A. T. & Hailu, T. G. (2021). The Impact of Effective Microorganisms (EM) on Egg Quality and Laying Performance of Chickens. International Journal of Food Science, 8895717. https://doi.org/10.1155/2021/8895717
    6. Bezabeh, M.W., Hailemariam, M.H., Sogn, T.A ., & EichGreatorex, S. (2021). Yield, nutrient uptake, and economic return of faba bean (Vicia faba L.) in calcareous soil as affected by compost types. Journal of Agriculture and Food Reasearch,6, 100237. https://doi.org/10.1016/j.jafr.2021.100237
    7. Bhatti A.A., Haq, S., & Bhat, R.A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis, 111, 458-467. https://doi.org/10.1016/j.micpath.2017.09.036
    8. Bustamante, M., Paredes, C., Marhuenda-Egea, F., Pe´rezEspinosa, A., Bernal, M., & Moral, R. (2008). Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere, 72, 551-557. https://doi.org/10.1016/j.chemosphere.2008.03.030
    9. Cai, M., Yao, J., Yang, H., Wang, R., & Masakorala, K. (2013). Aerobic biodegradation process of petroleum and pathway of main compounds in water flooding well of Dagang oil field. Bioresource Technology, 144, 100-106. https://doi.org/10.1016/j.biortech.2013.06.082
    10. Calderon-Tapia, C., Montero-Calderon, A., Nunez-Moreno, M., & PazminoArias, E. (2020). Laboratory Scale Evaluation of Effective Microorganisms in the Control of Order of Organic Waste from a Market in the City of Riobamba, Ecuador, 5(1). https://doi.org/doi.10.21931/RB/2020.05.01.6
    11. Canet, R., Pomares, F., Cabot, B., Chaves, C., Ferrer, E., Ribo, M., & Albiach, M.R. (2008). Composting olive mill pomace and other residues from rural southeastern Spain. Waste Manage, 28, 2585-2592. https://doi.org/10.1016/j.wasman.2007.11.015
    12. Chantal, K., Xiaohou, S., Weimu, W., & Ong’or, B.T.I. (2010). Effects of effective microorganisms on yield and quality of vegetable cabbage comparatively to nitrogen and phosphorus fertilizers. Pakistan Journal of Nutrition, 9 (11), 1039-1042. https://doi.org/10.3923/pjn.2010.1039.1042
    13. Condor-Golec, A.F., Perez, P.G. & Lokare, C. (2007). Effective microorganisms: Myth or Reality? Peruvian Journal of Biology, 14(2), 315-319. https://doi.org/10.15381/rpb.v14i2.1837
    14. Correa, M. (2001). The impact of effective microorganisms (EM) in various farming systems. A paper presented on the international workshop of EM Technology Programme in New Zealand. https://www.semanticscholar.org/paper/THE-IMPACT-OF-EFFECTIVE-MICROORGANISMS-(EM)-IN/8892469126ef3dd57b7215b822851a4030fbc3fa
    15. Cortez, J., Billes, G., & Bouche, M.B. (2000). Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biology and Fertility of Soils, 30(4), 318-327. https://doi.org/10.1007/s003740050010
    16. Daniel, O., & Anderson, J.M. (1992). Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biology & Biochemistry, 24(5), 465-470. https://doi.org/10.1016/0038-0717(92)90209-G
    17. David S.P., Penny, R.H., Philip, C.B. (2001). The role of soil microorganisms in soil organic matter conservation in the tropics. Nutrient Cycling in Agroecosystems, 61, 41-51. https://doi.org/10.1023/A:1013338028454
    18. El-Gendy, M.M., Shaaban, M., ElBondkly, A.M. & Shaaban, K.A. (2008). Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces. Applied Biochemistry and Biotechnology, 150(1), 85-96. https://doi.org/10.1007/s12010-008-8192-5
    19. EM Research Organisation (EMRO) How to make activated EM. Dr. Higa’s monthly message on Web Ecopure (2014). Accessed 2nd June, 2015. https://www.emrojapan.com/
    20. EM Research Organisation (EMRO) How to make activated EM. Dr. Higa’s monthly message on Web Ecopure (2014). https://www.emrojapan.com/
    21. Em Sustainable Living (2010). Activating EM. http://www.emsustainableliving.co.uk/.
    22. EMNZ (2014). Using EM for agriculture and horticulture. Accessed 15th May 2016. [email protected]. Powered by Airsquare.
    23. Escano, C.R. (1996). Experiences on EM Technology in the Philippines. http://www.futuretechtoday.net/em/index2.htm
    24. Ezeagu, G.G., Ijah, U.J.J., & Dauda Abioye, O. P. (2017). Activities of Locally Formulated and Commercial Effective Microorganisms in Composting of Organic Solid Wastes. Journal of Advances in Microbiology, 6(3), 1-15. https://doi.org/10.9734/JAMB/2017/36292
    25. Future Directions. Journal of Engineering and Applied Science, 68(48). https://doi.org/10.1186/s44147-021-00049-1
    26. Górski, R., & Kleiber, T. (2010). Effect of effective microorganisms (EM) on nutrient contents in substrate and development and yielding of rose (Rosa x hybrida) and gerbera (Gerbera jamesonii). Ecological chemistry and engineering, 17 (4), 505-513. https://typeset.io/pdf/effect-of-effective-microorganisms-em-on-nutrient-contents-3e4ekm7p1w.pdf
    27. Gunnars, K. (2016). What are probiotics and why are they so good for you. Authority Nutrtion, Evidence – based Approach. https://www.bibliomed.org/mnsfulltext/262/262-1680170054.pdf?1734710300
    28. Hidalgo, D., Corona, F. & MartinMarroquin, J.M. (2022). Manure Biostabilization by Effective Microorganisms as a Way to Improve its Agronomic Value. Biomass Conversion and Biorefinery, 12, 4649-4664. https://doi.org/10.1007/s13399-022-02428-x
    29. Higa, T. & Parr, J.F. (1994). Beneficial and Effective Microorganisms for sustainable Agriculture and Environment.International Nature Farming Research Centre Atami, Japan,pp 1-25. file:///C:/Users/Domenico/Downloads/EM%20(1).pdf
    30. Higa, T. (1991). Effective microorganisms: A biotechnology for mankind. In J.F. Parr, S.B. Hornick, and C.E. Whitman (ed.) Proceedings of the First International Conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, D.C., USA, 8-14. https://pdf.usaid.gov/pdf_docs/PNABK540.pdf
    31. Hu, C., & Qi, C. (2013). Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. European Journal of Agronomy, 46, 63-67. https://doi.org/10.1016/j.eja.2012.12.003
    32. Hussain, T., Javaid, T., Parr, J.F., Jilani, G., & Haq, M.A. (1999). Rice and wheat production in Pakistan with effective microorganisms. American Journal of Alternative Agriculture, 14, 30-36. https://www.jstor.org/stable/44503082
    33. Iriti, M., Scarafoni, A., Pierce, S., Castorina, G., & Vitalini, S. (2019). Soil Application of Effective Microorganisms (EM) Maintains Leaf Photosynthetic Efficiency, Increases Seed Yield and Quality Traits of Bean (Phaseolus vulgaris L.) Plants Grown on Different Substrates. Int. J. Mol. Sci., 20, 23-27. https://doi.org/10.3390/ijms20092327
    34. Ismah, A. (2011). Farming and gardening with effective microorganism (EM). Asian Farmers’ Association for Sustainable Rural development. Available: www.asianfarmers.org.
    35. Javaid, A., & Bajwa, R. (2011). Field evaluation of effective microorganisms (EM) application for growth, nodulation, and nutrition of mung bean. Turkish Journal of Agriculture and Forestry, 35, 443-452. https://doi.org/10.3906/tar-1001-599
    36. Johan, S., & Jesper, M. (2005). Antifungal lactic acid bacteria as bio preservatives. Trends in Food Science & Technology, 1,70-78. https://doi.org/10.1016/j.tifs.2004.02.014
    37. Joshi, H., Somduttand, C.P., & Mundra, S.L. (2019). Role of Effective Microorganisms (EM) in Sustainable Agriculture. International Journal Current Microbiology and Applied Science, 8(03),172-181. https://doi.org/10.20546/ijcmas.2019.803.024
    38. Jusoh, M.L., Manaf, L.A., & Latiff, P.A. (2013). Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian Journal of Environmental Health Science & Engineering, 10(1), 17. https://doi.org/10.1186/1735-2746-10-17
    39. Khaliq, A., Abbasi, M.K., & Hussain, T. (2006). Effect of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresource Technology, 97,967-972. https://doi.org/10.1016/j.biortech.2005.05.002
    40. Korn, J. (2013). How would you like a non-toxic household cleaner, plant food, compost additive, and even a potential source for getting monatomic elements from rockdust. FutureTechtoday Incorporated, U.S.A. https://www.bibliomed.org/mnsfulltext/262/262-1680170054.pdf?1734700517
    41. Kumar, S., Kaur, N., Singh, N.K., Raghava, G.P. S., & Mayilraj, S. (2013). Draft genome sequence of Streptomyces gancidicus Strain BKS 13-15. Genome Announcement, 1(2), e00150-13. https://doi.org/10.1128/genomeA.00150-13
    42. Lévai, L., Veres, S.Z., Makleit, P., Marozsán, M., & Szabó, B. (2006). New trends in plant nutrition. Proceedings of 41st Croatian and 1 st International Symposium on Agriculture, ISBN 953-6331-39-X, 435-436. https://m2.mtmt.hu/api/publication/1850862?&labelLang=eng
    43. Lu, Y., Wu, X., & Guo, J. (2009). Characteristics of municipal solid waste and sewage sludge co-composting. Waste Manage, 29,1152-1157. https://doi.org/10.1016/j.wasman.2008.06.030
    44. Maiti, P.K., Das, S., Sahoo, P. & Mandal, S. (2020). Streptomyces sp. SMO1 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Scientific Reports 10, 10092. https://doi.org/10.1038/s41598-020-66984-w
    45. Mwegoha, W. (2012). Anaerobic composting of pyrethrum waste with and without effective microorganisms. African Journal of Environmental Science and Technology, 6(8). https://www.ajol.info/index.php/ajest/article/view/81892/0
    46. Nauta, P. (2014). Effective microorganisms and SCD Probiotics- My #1 inoculants. info@smilinggardener com
    47. Ndona, R.K., Friede, J.K., Spornberger, A., Rinnofner, T., & Jezik, K. (2011). Effective micro-organisms (EM): An effective plant strengthening agent for tomatoes in protected cultivation. Biological Agriculture & Horticulture, 27, 189-203. https://doi.org/10.1080/01448765.2011.9756647
    48. Ndona, R.K., Friede, J.K., Spornberger, A., Rinnofner, T., & Jezik, K. (2011). Effective micro-organisms (EM): An effective plant strengthening agent for tomatoes in protected cultivation. Biological Agriculture & Horticulture, 27,189-203. https://doi.org/10.1080/01448765.2011.9756647
    49. Olle, M., & Williams, I.H. (2013). Effective microorganisms and their influence on vegetable production – a review. Journal of Horticultural Science & Biotechnology, 88(4), 380-386. https://doi.org/10.1080/14620316.2013.11512979
    50. Packialakshmi, N., & Yasotha, C. (2014). Role of effective microorganisms in unfertile soil. International Journal of Pytopharmacy, 4(1), 25 – 27. https://doi.org/10.7439/ijpp.v4i1.75
    51. Paranagal, J., Ligeza, S. & Smal, H. (2020). Impact of Effective Microorganism (Em) application on the physical condition of Haplic Luvisol. Agronomy, 10(7), 1049. https://doi.org/10.3390/agronomy10071049
    52. Patzer, S.I. & Volkmar, B. (2010). Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974. Journal of Bacteriology, 192, 426 – 435. https://doi.org/10.1128/JB.01250-09
    53. Perez-Murcia, M.D., Moreno-Caselles, J., Moral, R., PerezEspinosa, A. (2019). Use of composted sewage sludge as horticultural growth media: effects on germination and trace element extraction. Communication in Soil Science and Plant Analalysis ,36,571-582. https://doi.org/10.1081/css-200043286
    54. Pierce, S., Quaglino, F., Montagna, M., Spada, A., Casati, P., & Iriti, M. (2016). Evaluation of effective microorganisms efficacy on ‘Candidatus Phytoplasma solani’-infected and healthy periwinkle plants. Mitt. Klosterneubg. Rebe Wein Obstbau Früchteverwert, 66,89-92. https://doi.org/10.1007/978-981-19-6664-4_14
    55. Pimentel-Elardo, S.M., Kozytska, S., Bugni, T.S., Ireland, C.M., Moll, H. & Hentschel, U. (2010). Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean Sponges. Marine Drugs, 8(2), 373 – 380. https://doi.org/10.3390/md8020373
    56. Postma-Blaauw, M.B., Bloem, J., Faber, J.H., Van Groenigen, J.W., De Goede. R.G.M., & Brussaard, L. (2006). Earthworm species composition affects the soil bacterial community and net nitrogen mineralization. Pedobiologia, 50(3),243-256. https://research.wur.nl/en/publications/earthworm-species-composition-affects-the-soil-bacterial-communit
    57. Prisa, D. (2019a). Effective Microorganisms And Chabazitic-Zeolites For The Improvement Quality Of Echinopsis Hybrids. Asian Academic Research Journal of Multidisciplinary, 6 (2), 23-34. https://www.researchgate.net/publication/331305023_EFFECTIVE_MICROORGANISMS_AND_CHABAZITIC-ZEOLITES_FOR_THE_IMPROVEMENT_QUALITY_OF_ECHINOPSIS_HYBRIDS
    58. Prisa, D. (2019b). Improvement quality and content of pepper and chilli nitrates influenced by the Effective microoraganisms. American scientific research journal for engineering, technology and sciences, 53 (1), 176-181. https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/4742/1666
    59. Prisa, D. (2019c). Effect of chabazitic zeolites and effective microorganisms on growth and chemical composition of Aloe barbadensis Miller and Aloe arborescens Miller. International Journal of Agricultural Research, Sustainability, and Food Sufficiency (IJARSFS), 6(01),315-321. https://www.academiascholarlyjournal.org/ijarsfs/publications/mar19/Domenico_Prisa.pdf
    60. Prisa ,D. (2019d). Improvement quality of aubergine plants with effective microorganisms. Asian Academic Research Journal of Multidisciplinary, 6 (3), 1-8. https://www.researchgate.net/profile/DomenicoPrisa/publication/331801968_IMPROVEMENT_QUALITY_OF_AUBERGINE_PLANTS_WITH_EFFECTIVE_MICROORGANISMS/links/5c8ca145299bf14e7e7f575c/IMPROVEMENT-QUALITY-OF-AUBERGINE-PLANTS-WITH-EFFECTIVE-MICROORGANISMS.pdf
    61. Prisa, D. (2019e). Effective microorganisms for the cultivation and qualitative improvement of onion (Allium cepa L.). World Journal of Advanced Research and Reviews, 02(03), 001–007. https://doi.org/10.30574/wjarr.2019.2.3.0038
    62. Prisa, D. (2019f). Effective microorganisms for germination and root growth in Kalanchoe daigremontiana. World Journal of Advanced Research and Reviews, 03(03), 047–053. https://doi.org/10.30574/wjarr.2019.3.3.0074
    63. Prisa, D. (2019g). Effect of natural zeolites and zeolites added with microorganisms for the growth of cabbage (Brassica oleracea var. capitata L.). World Journal of Advanced Research and Reviews, 04(01), 006-012. https://doi.org/10.30574/wjarr.2019.4.1.0078
    64. Prisa, D. (2020). EM-Bokashi Addition to the Growing Media for the Quality Improvement of Kalanchoe Blossfeldiana. International Journal of Multidisciplinary Sciences and Advanced Technology (IJMSAT), 1(2), 54-59. https://www.ijmsat.com/archives/ijmsat-volume-1-issue-1
    65. Prisa, D. (2021). Myrtillocactus geometrizans fruit plant stimulated with Effective microorganisms. Open Access Research Journal of Biology and Pharmacy, 01(01), 025–032. https://oarjbp.com/sites/default/files/OARJBP-2021-0015.pdf
    66. Prisa, D. (2022) Effective Microorganisms Improve Growth and Minerals Content in the Medicinal Plant Bulbine frutescens. Indian Journal of Natural Sciences, 12 70, 37763-37770. https://ijcrr.com/article_html.php?did=4446&issueno=0
    67. Prisa, D.& Gobbino, M. (2021). Microbic and Algae biofertilizers in Aloe barbadensis Miller, Open Access Research Journal of Biology and Pharmacy, 1(2), 1-9. https://doi.org/10.53022/oarjbp.2021.1.2.0019
    68. Prisa, D., & Benati, A. (2021). Improving the quality of ornamental bulbous with plant growth-promoting rhizobacteria (PGPR). EPRA International Journal of Multidisciplinary Research (IJMR), 7(5), 255-263. https://eprajournals.com/IJMR/article/4951/abstract
    69. Prisa, D., & Benati, A. (2022). Microbial bio stimulant obtained from cactus and succulent plants for rooting and growth of the castello hybrid rose (Attilio Ragionieri)World Journal of Biology Pharmacy and Health Sciences, 12(03), 054–062. https://doi.org/10.30574/wjbphs.2022.12.3.0223
    70. Prisa, D., & Benati, A. (2023). Recycled water use with added microbial consortia in the cultivation of aromatic plants. GSC Advanced Research and Reviews, 15(02), 133–141. https://doi.org/10.30574/gscarr.2023.15.2.0162
    71. Prisa, D., & Benati, A. (2024). Growth-promoting microorganisms in the root stimulation of Celtis Australis (Bagolaro) and in the control of Ganoderma applanatum and Laetiporus sulphureus. GSC Biological and Pharmaceutical Sciences, 27(03), 001–009. https://doi.org/10.30574/gscbps.2024.27.3.0219
    72. Rezende, A.M.F., Tomita, C.K., & Uesugi, C.H. (2008). Cupric fungicides, benzalconium chlorides and liquid bioactive compost (Bokashi): Phytotoxicity and control of guava bacterial blight caused by Erwinia psidii. Tropical Plant Pathology, 33,288-294. https://doi.org/10.1590/S1982-56762008000400005
    73. Roberti, R., Bergonzoni, F., Finestrelli, A., & Leonardi, P. (2015). Biocontrol of Rhizoctonia solani disease and biostimulant effect by microbial products on bean plants. Italian Journal of Mycology, 44, 49-61. http://orcid.org/0000-0003-2170-1714
    74. Safwat, S.M., & Matta, M.E. (2021). Environmental Applications of Effective Microorganisms: A Review of Current Knowledge and Recommendations for
    75. Sangakkara,U.R. (2012). Effect of EM on Nitrogen and Potassium Levels in the Rhizosphere of Bush Bean. http://www.infrc.or.jp/english/KNF_Data_Base_Web/3rd_Conf _S_6_7.html
    76. Schiff, S.J. (2015). Undergravel filters. Center for Neural Engineering, Department of Engineering Science and Mechanics, Neurosurgery and physics. http://www.esm.psu.edu
    77. Sharma, A., Saha, T.N., Arora, A., Shah, R., & Nain, L. (2017). Efficient microorganism compost benefits plant growth and improves soil health in Calendula and Marigold. Horticultural Plant Journal, 3 (2), 67-72. https://doi.org/10.1016/j.hpj.2017.07.003
    78. Shin, K., Van Diepen, G., Blok, W., van Bruggen, A.H. (2017). Variability of Effective Micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens. Crop Protection, 99, 168-176. https://doi.org/10.1016/j.cropro.2017.05.025
    79. Simeamelak, M., Solomon, D., & Taye, T. (2013). The effect of Effective microorganisms on production and quality performance of Rhode Island Red Layers. International Journal of Livestock Production, 4(2), 22-29. https://doi.org/10.13140/RG.2.1.2824.2964
    80. Singh, D.S., Chand, S., & Anvar, M. (2003). Effect of organic and inorganic amendment on growth and nutrient accumulation by Isabgol (Plantago ovata) in sodic soil under greenhouse conditions. Journal of Medicinal and Aromatic Plant Sciences, 25, 414-419. https://eurekamag.com/research/012/000/012000593.php?srsltid=AfmBOopjp9IktMd_0EgvB78GmroHlDSdIuek8UcM3p2dS-kK6l9zydcY
    81. Sousa, S.C., Soares, F.A.C. & Garrido, S.M. (2008). Characterization of Streptomycetes with potential to promote plant growth and bio-control. Scientia Agricola, 65(5), 50-55. https://www.scielo.br/j/sa/a/FGB76Hg6V4SjtBXnFkfC6Zk/?format=pdf&lang=en
    82. Sun, P.F., Fang, W.T., Shin, L.Y., Wei, J.Y., Fu, S.F., & Chou, J.Y. (2014). Indole-3- Acetic Acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. plos one, 9(12), e114196. https://doi.org/10.1371/journal.pone.0114196
    83. Sweeney, R. (2010). EM, Effective Microorganisms and a few of its amazing uses. EM Sustainable Living, 2(1). www.em-sustainableliving.co.uk.
    84. Talaat, N.B. (2019). Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salttolerance by regulating photosynthetic rate and endogenous phytohormones production. Scientia Horticulture, 250, 254-265. https://doi.org/10.1016/j.scienta.2019.02.052
    85. Talaat, N.B., Ghoniem, A.E., Abdelhamid, M.T., & Shawky, B.T. (2015). Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regulation , 75, 281-295. https://doi.org/10.1007/s10725-014-9952-6
    86. TeraGanix Wastewater solutions with EM.1 Waste treatment (2016). [email protected]
    87. Umi, K.M.S., & Sariah, M. (2006). Utilization of microbes for sustainable agriculture in Malaysia: current status. Bio prospecting and management of microorganisms. National Conference on Agro biodiversity conservation and sustainable utilization, 27-29. https://journals.e-palli.com/home/index.php/ijsa/article/view/2538
    88. Vaid, S.K., Kumar, A., Sharma, A., Srivastava, P.C., & Shukla, A.K. (2017). Role of some plant growth promotery bacteria onmenhanced Fe uptake of wheat. Communications in Soil Science and Plant Analysis, 48(7), 756-768. https://doi.org/10.1080/00103624.2017.1298780
    89. Valarini, P.J., Alvarez, M.C.D., Gasco, J.M., Guerrero, F., & Tokeshi, H. (2003). Assessment of soil properties by organic matter and EM-microorganism incorporation. Revista Brasilera de Ciência do Solo., 27, 3. https://www.scielo.br/j/rbcs/a/HNcbsKpm4Qt4q5xpWjNGw9b/?format=pdf&lang=en
    90. Xiaohou, S., Min, T., Ping, J., & Weiling, C. (2008). Effect of EM Bokashi application on control of secondary soil salinization. Water Science and Engineering, 1 (4),99-104. https://doi.org/10.3882/j.issn.1674-2370.2008.04.011
    91. Younas, T., Umero, M., Gondal, A.H., Aziz, H. & Khan, M.S. (2022). A comprehensive review on impact of microorganisms on soil and plant. Journal of Bioresource Management, 9(2), 109-118. https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=1459&context=jbm

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

How to cite

Prisa, D., & Jamal, A. (2025). Comprehensive Analysis of Effective Microorganisms: Impacts on Soil, Plants, and the Environment. Multidisciplinary Reviews, (| Accepted Articles). Retrieved from https://malque.pub/ojs/index.php/mr/article/view/7935
  • Article viewed - 88