• Abstract

    Breast cancer remains a leading cause of morbidity and mortality among women worldwide. Early detection and accurate characterization of palpable breast lumps are critical for timely intervention and improved outcomes. Imaging techniques, including mammography and magnetic resonance imaging (MRI), are integral to breast lump evaluation; however, sonomammography has emerged as a pivotal diagnostic tool, especially in women with dense breast tissue and younger age groups. This narrative review explores the role of sonomammograms in the early detection and characterization of palpable breast lumps, emphasizing their clinical utility, strengths, and limitations. Sonomammography, a combination of ultrasound and mammographic evaluation, offers superior sensitivity in distinguishing benign from malignant breast lesions. Key sonographic features, such as lesion margins, shape, echogenicity, and vascularity, assist in the precise categorization of lumps on the basis of Breast Imaging Reporting and Data System (BI-RADS) criteria. Additionally, the technique excels in differentiating cystic from solid lesions and provides complementary information to physical examination and mammography, particularly in challenging cases. The review also highlights advances in sonographic technology, including elastography and artificial intelligence, which promise to further enhance diagnostic accuracy. Despite its advantages, limitations such as operator dependency and reduced sensitivity for microcalcifications underscore the need for multimodal approaches in breast imaging. Overall, sonomammography represents a noninvasive, cost-effective, and widely accessible modality for the early detection and detailed characterization of palpable breast lumps. Its integration into clinical practice offers significant potential for optimizing diagnostic pathways and improving patient outcomes.

  • References

    1. Aboagye, S. O., Hunt, J. A., Ball, G., & Wei, Y. (2024). Portable noninvasive technologies for early breast cancer detection: A systematic review. Computers in Biology and Medicine, 182, 109219. https://doi.org/10.1016/j.compbiomed.2024.109219
    2. Ashby, K., Adams, B. N., & Shetty, M. (2024). Appropriate Magnetic Resonance Imaging Ordering. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK565857/
    3. Baines, C. J., & Miller, A. B. (1997). Mammography versus clinical examination of the breasts. Journal of the National Cancer Institute. Monographs, 22, 125–129. https://doi.org/10.1093/jncimono/1997.22.125
    4. Bhushan, A., Gonsalves, A., & Menon, J. U. (2021). Current State of Breast Cancer Diagnosis, Treatment, and Theranostics. Pharmaceutics, 13(5), 723. https://doi.org/10.3390/pharmaceutics13050723
    5. Biswas, S. K., Banerjee, S., Baker, G. W., Kuo, C.-Y., & Chowdhury, I. (2022). The Mammary Gland: Basic Structure and Molecular Signaling during Development. International Journal of Molecular Sciences, 23(7), 3883. https://doi.org/10.3390/ijms23073883
    6. Bouzón, A., Acea, B., Soler, R., Iglesias, Á., Santiago, P., Mosquera, J., Calvo, L., Seoane-Pillado, T., & García, A. (2016). Diagnostic accuracy of MRI to evaluate tumour response and residual tumour size after neoadjuvant chemotherapy in breast cancer patients. Radiology and Oncology, 50(1), 73–79. https://doi.org/10.1515/raon-2016-0007
    7. Brisken, C., & O’Malley, B. (2010). Hormone Action in the Mammary Gland. Cold Spring Harbor Perspectives in Biology, 2(12), a003178. https://doi.org/10.1101/cshperspect.a003178
    8. Burnside, E. S., Sickles, E. A., Bassett, L. W., Rubin, D. L., Lee, C. H., Ikeda, D. M., Mendelson, E. B., Wilcox, P. A., Butler, P. F., & D’Orsi, C. J. (2009). The ACR BI-RADS® Experience: Learning From History. Journal of the American College of Radiology : JACR, 6(12), 851–860. https://doi.org/10.1016/j.jacr.2009.07.023
    9. Crystal, P., Strano, S. D., Shcharynski, S., & Koretz, M. J. (2003). Using sonography to screen women with mammographically dense breasts. AJR. American Journal of Roentgenology, 181(1), 177–182. https://doi.org/10.2214/ajr.181.1.1810177
    10. Desser, T. S., & Jeffrey, R. B. (2001). Tissue harmonic imaging techniques: Physical principles and clinical applications. Seminars in Ultrasound, CT, and MR, 22(1), 1–10. https://doi.org/10.1016/s0887-2171(01)90014-9
    11. Devolli-Disha, E., Manxhuka-Kërliu, S., Ymeri, H., & Kutllovci, A. (2009). COMPARATIVE ACCURACY OF MAMMOGRAPHY AND ULTRASOUND IN WOMEN WITH BREAST SYMPTOMS ACCORDING TO AGE AND BREAST DENSITY. Bosnian Journal of Basic Medical Sciences, 9(2), 131–136.
    12. Ding, W., Fan, Z., Xu, Y., Wei, C., Li, Z., Lin, Y., Zhu, J., & Ruan, G. (2023). Magnetic resonance imaging in screening women at high risk of breast cancer: A meta-analysis. Medicine, 102(10), e33146. https://doi.org/10.1097/MD.0000000000033146
    13. Forrai, G., Kovács, E., Ambrózay, É., Barta, M., Borbély, K., Lengyel, Z., Ormándi, K., Péntek, Z., Tünde, T., & Sebő, É. (2022). Use of Diagnostic Imaging Modalities in Modern Screening, Diagnostics and Management of Breast Tumours 1st Central-Eastern European Professional Consensus Statement on Breast Cancer. Pathology and Oncology Research, 28, 1610382. https://doi.org/10.3389/pore.2022.1610382
    14. Gartlehner, G., Thaler, K., Chapman, A., Kaminski‐Hartenthaler, A., Berzaczy, D., Van Noord, M. G., & Helbich, T. H. (2013). Mammography in combination with breast ultrasonography versus mammography for breast cancer screening in women at average risk. The Cochrane Database of Systematic Reviews, 2013(4), CD009632. https://doi.org/10.1002/14651858.CD009632.pub2
    15. Ginsburg, O., Yip, C.-H., Brooks, A., Cabanes, A., Caleffi, M., Dunstan Y., J., Gyawali, B., McCormack, V., de Anderson, M. M., Mehrotra, R., Mohar, A., Murillo, R., Pace, L. E., Paskett, E. D., Romanoff, A., Rositch, A. F., Scheel, J., Schneidman, M., Unger-Saldana, K., … Anderson, B. O. (2020). Breast cancer early detection: A phased approach to implementation. Cancer, 126(Suppl 10), 2379–2393. https://doi.org/10.1002/cncr.32887
    16. Gokhale, S. (2009). Ultrasound characterization of breast masses. The Indian Journal of Radiology & Imaging, 19(3), 242–247. https://doi.org/10.4103/0971-3026.54878
    17. Greene, F. L., Hicks, C., Eddy, V., & Davis, C. (1985). Mammography, sonomammography, and diaphanography (lightscanning). A prospective, comparative study with histologic correlation. The American Surgeon, 51(1), 58–60.
    18. Hermansyah, D., & Firsty, N. N. (2022). The Role of Breast Imaging in Pre- and Post-Definitive Treatment of Breast Cancer. In H. N. Mayrovitz (Ed.), Breast Cancer. Exon Publications. http://www.ncbi.nlm.nih.gov/books/NBK583814/
    19. Johnson, K. B., Wei, W., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., Zhao, J., & Snowdon, J. L. (2021). Precision Medicine, AI, and the Future of Personalized Health Care. Clinical and Translational Science, 14(1), 86–93. https://doi.org/10.1111/cts.12884
    20. Kelly, K. M., Dean, J., Comulada, W. S., & Lee, S.-J. (2010). Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. European Radiology, 20(3), 734–742. https://doi.org/10.1007/s00330-009-1588-y
    21. Khan, M. D., Banerjee, S., Tarafdar, S., & Kundu, D. (2021). Role of sonomammography and its diagnostic accuracy for evaluating benign and malignant breast lesions. International Journal of Research in Medical Sciences, 9(5), 1448–1453. https://doi.org/10.18203/2320-6012.ijrms20211884
    22. Kuhl, C. K., Schrading, S., Leutner, C. C., Morakkabati-Spitz, N., Wardelmann, E., Fimmers, R., Kuhn, W., & Schild, H. H. (2005). Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 23(33), 8469–8476. https://doi.org/10.1200/JCO.2004.00.4960
    23. Lee, M. W. (2014). Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography, 33(4), 227–239. https://doi.org/10.14366/usg.14021
    24. Madjar, H. (2010). Role of Breast Ultrasound for the Detection and Differentiation of Breast Lesions. Breast Care, 5(2), 109–114. https://doi.org/10.1159/000297775
    25. Malherbe, F., Nel, D., Molabe, H., Cairncross, L., & Roodt, L. (2022). Palpable breast lumps: An age-based approach to evaluation and diagnosis. South African Family Practice, 64(1), 5571. https://doi.org/10.4102/safp.v64i1.5571
    26. Malherbe, K., & Tafti, D. (2024). Breast Ultrasound. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK557837/
    27. Mehta, T. S., Raza, S., & Baum, J. K. (2000). Use of Doppler ultrasound in the evaluation of breast carcinoma. Seminars in Ultrasound, CT, and MR, 21(4), 297–307. https://doi.org/10.1016/s0887-2171(00)90024-6
    28. Nicosia, L., Gnocchi, G., Gorini, I., Venturini, M., Fontana, F., Pesapane, F., Abiuso, I., Bozzini, A. C., Pizzamiglio, M., Latronico, A., Abbate, F., Meneghetti, L., Battaglia, O., Pellegrino, G., & Cassano, E. (2023). History of Mammography: Analysis of Breast Imaging Diagnostic Achievements over the Last Century. Healthcare, 11(11), 1596. https://doi.org/10.3390/healthcare11111596
    29. Okello, J., Kisembo, H., Bugeza, S., & Galukande, M. (2014). Breast cancer detection using sonography in women with mammographically dense breasts. BMC Medical Imaging, 14, 41. https://doi.org/10.1186/s12880-014-0041-0
    30. Paepke, S., Metz, S., Brea Salvago, A., & Ohlinger, R. (2018). Benign Breast Tumours—Diagnosis and Management. Breast Care, 13(6), 403–412. https://doi.org/10.1159/000495919
    31. Patel, A. D., Gallagher, A. G., Nicholson, W. J., & Cates, C. U. (2006). Learning curves and reliability measures for virtual reality simulation in the performance assessment of carotid angiography. Journal of the American College of Cardiology, 47(9), 1796–1802. https://doi.org/10.1016/j.jacc.2005.12.053
    32. Perez-Sanchez, A., Johnson, G., Pucks, N., Soni, R. N., Lund, T. J. S., Andrade, A. J., Le, M.-P. T., Solis-McCarthy, J., Wong, T., Ashraf, A., Kumar, A. D., Banauch, G. I., Verner, J. R., Sodhi, A., Thomas, M. K., LoPresti, C., Schmitz, H., Koratala, A., Hunninghake, J., … Soni, N. J. (2024). Comparison of 6 handheld ultrasound devices by point-of-care ultrasound experts: A cross-sectional study. The Ultrasound Journal, 16(1), 45. https://doi.org/10.1186/s13089-024-00392-3
    33. Ramsay, D., Kent, J., Hartmann, R., & Hartman, P. (2005). Anatomy of the lactating human breast redefined with ultrasound imaging. Journal of Anatomy, 206(6), 525–534. https://doi.org/10.1111/j.1469-7580.2005.00417.x
    34. Rotten, D., Levaillant, J. M., Le Floch, J. P., Constancis, E., & André, J. M. (1988). Mass screening for breast cancer with sonomammography: A prospective study. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 28(3), 257–267. https://doi.org/10.1016/0028-2243(88)90036-6
    35. Scheel, J. R., Lee, J. M., Sprague, B. L., Lee, C. I., & Lehman, C. D. (2015). Screening Ultrasound as an Adjunct to Mammography in Women with Mammographically Dense Breasts. American Journal of Obstetrics and Gynecology, 212(1), 9–17. https://doi.org/10.1016/j.ajog.2014.06.048
    36. Wilkinson, L., & Gathani, T. (2022). Understanding breast cancer as a global health concern. The British Journal of Radiology, 95(1130), 20211033. https://doi.org/10.1259/bjr.20211033
    37. Zhang, X.-Y., Wei, Q., Wu, G.-G., Tang, Q., Pan, X.-F., Chen, G.-Q., Zhang, D., Dietrich, C. F., & Cui, X.-W. (2023). Artificial intelligence—Based ultrasound elastography for disease evaluation—A narrative review. Frontiers in Oncology, 13, 1197447. https://doi.org/10.3389/fonc.2023.1197447
    38. Zheng, D., He, X., & Jing, J. (2023). Overview of Artificial Intelligence in Breast Cancer Medical Imaging. Journal of Clinical Medicine, 12(2), 419. https://doi.org/10.3390/jcm12020419
    39. Zhu, Q., Cronin, E. B., Currier, A. A., Vine, H. S., Huang, M., Chen, N., & Xu, C. (2005). Benign versus Malignant Breast Masses: Optical Differentiation with US-guided Optical Imaging Reconstruction. Radiology, 237(1), 57–66. https://doi.org/10.1148/radiol.2371041236

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

How to cite

Garg, D. P., & khan, D. I. (2025). Role of sonomammograms in the early detection and characterization of palpable breast lumps: A narrative review. Multidisciplinary Reviews, (| Accepted Articles). Retrieved from https://malque.pub/ojs/index.php/mr/article/view/7888
  • Article viewed - 121