• Abstract

    Pharmaceutical formulations' particle size distribution (PSD) has a significant impact on the stability, bioavailability, and effectiveness of medications. In various delivery systems, such as oral, inhalation, transdermal and parenteral, the distribution of particle sizes can impact a drug's absorption, release rate, and therapeutic efficacy. This review presents the role of PSD in improving drug delivery quality through various methods. In respiratory formulations, for example, particles of a certain size more easily reach the lower respiratory tract, while in transdermal and ophthalmic systems, smaller particle sizes aid more controlled drug penetration and release. With attention to particle sizing techniques, more stable and safe formulations can be developed, enabling improved therapy and reduced side effects. The study's findings highlight how crucial it is to comprehend PSD during the medication development process, particularly in regard to promoting the best formulations for therapeutic efficacy and safety. In addition, the role of particle size (PSD) in various drug delivery system is now becoming more significant with advances in pharmaceutical technology. In inhalation formulations, PSD enables improved drug delivery efficiency by more accurately directing particles to target locations, such as the lower respiratory tract. On the other hand, in transdermal and ophthalmic delivery system, the use of nano-sized particles can enhance penetration into tissues and ensure controlled drug release, thereby minimizing systemic side effects. The study also discusses modern approaches, such as PSD measurement techniques that include laser diffraction analysis and cascade impactor methodes, which provide real-time and in-depth data to ensure formulation quality. With the implementation of these technologies, the development of more stable, safe and effective drug delivery system becomes possible. A deep understanding of PSD can help optimize drug therapy for various conditions, whether conventional pharmaceutical approaches or nanotechnologies.

  • References

    1. Abdelkader, H., Wu, Z., Al-Kassas, R., & Alany, R. G. (2012). Niosomes and discomes for ocular delivery of naltrexone hydrochloride: Morphological, rheological, spreading properties and photo-protective effects. International Journal of Pharmaceutics, 433(1–2), 142–148. https://doi.org/10.1016/j.ijpharm.2012.05.011
    2. Agboola, A. A., Nowak, A., Duchnik, W., Kucharski, Ł., Story, A., Story, G., Struk, Ł., Antosik, A. K., & Ossowicz-Rupniewska, P. (2023). Emulsion-Based Gel Loaded with Ibuprofen and Its Derivatives. Gels, 9(5), 391. https://doi.org/10.3390/GELS9050391/S1
    3. Aggarwal, N., & Goindi, S. (2012). Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis - Dermatophytosis. International Journal of Pharmaceutics, 437(1–2), 277–287. https://doi.org/10.1016/j.ijpharm.2012.08.015
    4. Ahmad, M. Z., Mohammed, A. A., & Mokhtar Ibrahim, M. (2017). Technology overview and drug delivery application of proniosome. Pharmaceutical Development and Technology, 22(3), 302–311. https://doi.org/10.3109/10837450.2015.1135344
    5. Ainurofiq, A., Mauludin, R., Mudhakir, D., & Soewandhi, S. N. (2018). The effect of compression on solid-state properties of desloratadine and multicomponent crystal. Journal of Research in Pharmacy, 22(4), Article 4. https://doi.org/10.12991/jrp.2018.99
    6. Ainurofiq, A., Mauludin, R., Mudhakir, D., & Soewandhi, S. N. (2020). Evaluation of Thermal-Induced Polymorphic Transformation on Desloratadine and Desloratadine-Benzoic Acid Salt. Pharmaceutical Sciences, 26(4), Article 4. https://doi.org/10.34172/PS.2020.59
    7. Ainurofiq, A., Prasetya, A., Rahayu, B. G., Al Qadri, M. S., Kovusov, M., & Laksono, O. E. P. (2023a). Recent Developments In Brain-Targeted Drug Delivery Systems via Intranasal Route. Farmacja Polska, 78(12), 695–708. https://doi.org/10.32383/farmpol/163334
    8. Ainurofiq, A., Sari, A. P. F., Mardhiyah, A., Nisa, F. S., Azka, R. L., Putri, S. K., & Saputri, V. L. (2023c). Chitosan as floating-mucoadhesive polymers in gastroretentive drug delivery. Science, Engineering and Health Studies, 23010002–23010002. https://doi.org/10.69598/sehs.17.23010002
    9. Ainurofiq, A., Wuslatush Sholekah, C., Hanifah, D., Susanti, E. N., Suryaningrum, M. T., & Kusumawardhani, M. A. (2023b). Efforts in improving tablets’ tensile strength with a coating system and brittle excipient: a review. Bulletin of Pharmaceutical Sciences Assiut University, 46(2), 669–682. https://doi.org/10.21608/bfsa.2023.327335
    10. Alam, S., Aslam, M., Khan, A., Imam, S. S., Aqil, M., Sultana, Y., & Ali, A. (2016). Nanostructured lipid carriers of pioglitazone for transdermal application: From experimental design to bioactivity detail. Drug Delivery, 23(2), 601–609. https://doi.org/10.3109/10717544.2014.923958
    11. Aliasgharlou, L., Ghanbarzadeh, S., Azimi, H., Zarrintan, M. H., & Hamishehkar, H. (2016). Nanostructured lipid carrier for topical application of N-acetyl glucosamine. Advanced Pharmaceutical Bulletin, 6(4), 581–587. https://doi.org/10.15171/apb.2016.072
    12. Arunothayanun, P., Uchegbu, I. F., & Florence, A. T. (2010). Osmotic Behaviour of Polyhedral Non-ionic Surfactant Vesicles (Niosomes). Journal of Pharmacy and Pharmacology, 51(6), 651–657. https://doi.org/10.1211/0022357991772934
    13. Ashtikar, M., Nagarsekar, K., & Fahr, A. (2016). Transdermal delivery from liposomal formulations – Evolution of the technology over the last three decades. Journal of Controlled Release, 242, 126–140. https://doi.org/10.1016/j.jconrel.2016.09.008
    14. Barber, T. A. (1999). Control of Particulate Matter Contamination in Healthcare Manufacturing. Control of Particulate Matter Contamination in Healthcare Manufacturing. https://doi.org/10.1201/9780429246692
    15. Borchert, S. J., Abe, A., Aldrich, D. S., Fox, L. E., & Freeman, J. E. (1986). Particle Matter in Parenteral Products: A Review. 4–7.
    16. Bukofzer, S., Ayres, J., Chavez, A., Devera, M., Miller, J., Ross, D., Shabushnig, J., Vargo, S., Watson, H., & Watson, R. (2015). Industry perspective on the medical risk of visible particles in injectable drug products. PDA Journal of Pharmaceutical Science and Technology, 69(1), 123–139. https://doi.org/10.5731/pdajpst.2015.01037
    17. Chang, R. Y. K., & Chan, H. K. (2022). Advancements in Particle Engineering for Inhalation Delivery of Small Molecules and Biotherapeutics. Pharmaceutical Research, 39(12), 3047–3061. https://doi.org/10.1007/s11095-022-03363-2
    18. Chudasama, A., Patel, V., Nivsarkar, M., Vasu, K., & Shishoo, C. (2011). Investigation of microemulsion system for transdermal delivery of itraconazole. Journal of Advanced Pharmaceutical Technology & Research, 2(1), 30–38. https://doi.org/10.4103/2231-4040.79802
    19. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2). https://doi.org/10.3390/PHARMACEUTICS10020057
    20. de la Fuente, M., Raviña, M., Paolicelli, P., Sanchez, A., Seijo, B., & Alonso, M. J. (2010). Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Advanced Drug Delivery Reviews, 62(1), 100–117. https://doi.org/10.1016/j.addr.2009.11.026
    21. Doktorovova, S., & Souto, E. B. (2009). Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review. Expert Opinion on Drug Delivery, 6(2), 165–176. https://doi.org/10.1517/17425240802712590
    22. Dragicevic-Curic, N., Scheglmann, D., Albrecht, V., & Fahr, A. (2009). Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: Characterization, stability and in vitro skin penetration studies. Colloids and Surfaces B: Biointerfaces, 70(2), 198–206. https://doi.org/10.1016/j.colsurfb.2008.12.030
    23. Dudhat, K. R., & Patel, H. V. (2022a). Influence of particle size and particle deposition of inhaled medication in lung disease: a comrehensive review. International Journal of Pharmaceutical Sciences and Drug Research, 141–157. https://doi.org/10.25004/IJPSDR.2022.140119
    24. Dudhat, K. R., & Patel, H. V. (2022b). Influence of Particle Size and Particle Deposition of Inhaled Medication in Lung Disease: A Comrehensive Review. International Journal of Pharmaceutical Sciences and Drug Research, 14(1), 141–157. https://doi.org/10.25004/ijpsdr.2022.140119
    25. Dwivedi, M., Sharma, V., & Pathak, K. (2017). Pilosebaceous targeting by isotretenoin-loaded invasomal gel for the treatment of eosinophilic pustular folliculitis: optimization, efficacy and cellular analysis. Drug Development and Industrial Pharmacy, 43(2), 293–304. https://doi.org/10.1080/03639045.2016.1239628
    26. Eloy, J. O., Claro de Souza, M., Petrilli, R., Barcellos, J. P. A., Lee, R. J., & Marchetti, J. M. (2014). Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids and Surfaces B: Biointerfaces, 123, 345–363. https://doi.org/10.1016/j.colsurfb.2014.09.029
    27. Ferreira, K. S. A., dos Santos, B. M. A., Lucena, N. de P., Ferraz, M. S., Carvalho, R. de S. F., Júnior, A. P. D., Magalhães, N. S. S., & Lira, R. P. C. (2018). Ocular delivery of moxifloxacin-loaded liposomes. Arquivos Brasileiros de Oftalmologia, 81(6), 510–513. https://doi.org/10.5935/0004-2749.20180090
    28. Ghosh, S., Mukherjee, B., Chaudhuri, S., Roy, T., Mukherjee, A., & Sengupta, S. (2018). Methotrexate Aspasomes Against Rheumatoid Arthritis: Optimized Hydrogel Loaded Liposomal Formulation with In Vivo Evaluation in Wistar Rats. AAPS PharmSciTech, 19(3), 1320–1336. https://doi.org/10.1208/s12249-017-0939-2
    29. Göke, K., Roese, E., Arnold, A., Kuntsche, J., & Bunjes, H. (2016). Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions. Molecular Pharmaceutics, 13(9), 3187–3195. https://doi.org/10.1021/acs.molpharmaceut.6b00395
    30. Honeywell-Nguyen, P. L., & Bouwstra, J. A. (2005). Vesicles as a tool for transdermal and dermal delivery. Drug Discovery Today: Technologies, 2(1), 67–74. https://doi.org/10.1016/j.ddtec.2005.05.003
    31. Hussein, G. M., Elhaj, B. M., & Saad Ali, H. (n.d.). A multifaceted review journal in the field of pharmacy Characterization of Drug Delivery Particles in Pharmaceutical Disperse Systems: A Review.
    32. Jeong, W. Y., Kwon, M., Choi, H. E., & Kim, K. S. (2021). Recent advances in transdermal drug delivery systems: A review. Biomaterials Research, 25(1). https://doi.org/10.1186/S40824-021-00226-6/ASSET/985EEC22-DE59-46AB-BB1E-AD6EC4F6621C/ASSETS/GRAPHIC/S40824-021-00226-6.FIG.006.PNG
    33. Jiang, H., Sheng, Y., & Ngai, T. (2020). Pickering emulsions: Versatility of colloidal particles and recent applications. Current Opinion in Colloid & Interface Science, 49, 1–15. https://doi.org/10.1016/J.COCIS.2020.04.010
    34. Kállai-Szabó, N., Farkas, D., Lengyel, M., Basa, B., Fleck, C., & Antal, I. (2024). Microparticles and multi-unit systems for advanced drug delivery. European Journal of Pharmaceutical Sciences, 194, 106704. https://doi.org/10.1016/J.EJPS.2024.106704
    35. Kamran, M., Ahad, A., Aqil, M., Imam, S. S., Sultana, Y., & Ali, A. (2016). Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. International Journal of Pharmaceutics, 505(1–2), 147–158. https://doi.org/10.1016/j.ijpharm.2016.03.030
    36. Kaur, I. P., Garg, A., Singla, A. K., & Aggarwal, D. (2004). Vesicular systems in ocular drug delivery: An overview. International Journal of Pharmaceutics, 269(1), 1–14. https://doi.org/10.1016/j.ijpharm.2003.09.016
    37. Kesisoglou, F., Panmai, S., & Wu, Y. (2007). Nanosizing—Oral formulation development and biopharmaceutical evaluation. Advanced Drug Delivery Reviews, 59(7), 631–644. https://doi.org/10.1016/j.addr.2007.05.003
    38. Kumar, R., Mehta, P., Shankar, K. R., Rajora, M. A. K., Mishra, Y. K., Mostafavi, E., & Kaushik, A. (2022). Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharmaceutical Research, 39(11), 2831–2855. https://doi.org/10.1007/s11095-022-03286-y
    39. Lau, E. (2001). Handbook of Modern Pharmaceutical Analysis: Preformulation studies. In Separation Science and Technology (Vol. 3).
    40. Leister, N., & Karbstein, H. P. (2020). Evaluating the Stability of Double Emulsions—A Review of the Measurement Techniques for the Systematic Investigation of Instability Mechanisms. Colloids and Interfaces 2020, Vol. 4, Page 8, 4(1), 8. https://doi.org/10.3390/COLLOIDS4010008
    41. Liu, F., & Hutchinson, R. (2024). Visible particles in parenteral drug products: A review of current safety assessment practice. Current Research in Toxicology, 7. https://doi.org/10.1016/j.crtox.2024.100175
    42. Manosroi, A., Chankhampan, C., Manosroi, W., & Manosroi, J. (2013). Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. European Journal of Pharmaceutical Sciences, 48(3), 474–483. https://doi.org/10.1016/j.ejps.2012.12.010
    43. Mazaheri, M., Saggu, M., Wuchner, K., Koulov, A. V., Nikels, F., Chalus, P., Das, T. K., Cash, P. W., Finkler, C., Levitskaya-Seaman, S. V., Case, J., Parsons, J., & Gonzalez, K. (2024). Monitoring of Visible Particles in Parenteral Products by Manual Visual Inspection—Reassessing Size Threshold and Other Particle Characteristics that Define Particle Visibility. Journal of Pharmaceutical Sciences, 113(3), 616–624. https://doi.org/10.1016/j.xphs.2023.10.002
    44. Mbah, C. C., Builders, P. F., & Attama, A. A. (2014). Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus. Expert Opinion on Drug Delivery, 11(1), 45–59. https://doi.org/10.1517/17425247.2013.860130
    45. Meng, S., Chen, Z., Yang, L., Zhang, W., Liu, D., Guo, J., Guan, Y., & Li, J. (2013). Enhanced transdermal bioavailability of testosterone propionate via surfactant-modified ethosomes. International Journal of Nanomedicine, 8, 3051–3060. https://doi.org/10.2147/IJN.S46748
    46. Mezei, M., & Gulasekharam, V. (1980). Life Sciences, Vol. 26, pp. 1473-1477 Printed in the U.S.A. Pergamon. Drug Delivery, 26(14), 1473–1477.
    47. Mitchell, J. P., & Nagel, M. W. (2004). Particle Size Analysis of Aerosols from Medicinal Inhalers. KONA Powder and Particle Journal, 22(March), 32–65. https://doi.org/10.14356/KONA.2004010
    48. Moghassemi, S., & Hadjizadeh, A. (2014). Nano-niosomes as nanoscale drug delivery systems: An illustrated review. Journal of Controlled Release, 185(1), 22–36. https://doi.org/10.1016/j.jconrel.2014.04.015
    49. Mok, Z. H. (2024). The effect of particle size on drug bioavailability in various parts of the body. Pharmaceutical Science Advances, 2(May 2023), 100031. https://doi.org/10.1016/j.pscia.2023.100031
    50. Nadya Bestari, A., Saifullah Sulaiman, T., & Ayu Purnamasari, D. (2017). The Effect of Particle Size Reduction from Ibuprofen Tablet to Ibuprofen Pulveres on its Dissolution Rate, Dissolution Profile, and Drug Stability. Majalah Farmaseutik, 13(1), 45–55.
    51. Nayak, S., Ghugare, P., & Vaidhun, B. (2020). Evaluation of Aerodynamic Particle Size Distribution of Drugs Used in Inhalation Therapy: A Concise Review. International Journal of Research -Granthaalayah, 8(7), 264–271. https://doi.org/10.29121/granthaalayah.v8.i7.2020.579
    52. Nijhu, R. S., Khatun, A., & Hossen, Md. F. (2024). A comprehensive review of particle size analysis techniques. International Journal of Pharmaceutical Research and Development, 6(1), 01–05. https://doi.org/10.33545/26646862.2024.V6.I1A.37
    53. Ozturk, A. A., & Arpagaus, C. (2021). Nano Spray-Dried Drugs for Oral Administration: A Review. Assay and Drug Development Technologies, 19(7), 412–441. https://doi.org/10.1089/ADT.2021.053
    54. Pardeike, J., Hommoss, A., & Müller, R. H. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics, 366(1–2), 170–184. https://doi.org/10.1016/j.ijpharm.2008.10.003
    55. Parveen, R., Samal, M., Nafis, Mukhtar, H. M., & Ahmad, S. (2023). Development of solid lipid nanoparticle gel for transdermal delivery system of chaulmoogra oil. Open Exploration 2019 4:2, 4(2), 176–188. https://doi.org/10.37349/EMED.2023.00132
    56. Perez, M., Décaudin, B., Abou Chahla, W., Nelken, B., Storme, L., Masse, M., Barthélémy, C., Lebuffe, G., & Odou, P. (2018). Effectiveness of in-Line Filters to Completely Remove Particulate Contamination during a Pediatric Multidrug Infusion Protocol. Scientific Reports, 8(1), 4–11. https://doi.org/10.1038/s41598-018-25602-6
    57. Ramadon, D., McCrudden, M. T. C., Courtenay, A. J., & Donnelly, R. F. (2022). Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Delivery and Translational Research, 12(4), 758–791. https://doi.org/10.1007/s13346-021-00909-6
    58. Runnsjö, A., Liljedahl, S., Sagna, D., Ekblad, M., & Alenfall, J. (2022). A Novel Microparticle Based Formulation for Topical Delivery of FOL-005, a Small Peptide. Journal of Pharmaceutical Sciences, 111(5), 1309–1317. https://doi.org/10.1016/j.xphs.2022.01.009
    59. Sangolkar, S. S., Adhao, V. S., Mundhe, D. G., & Sawarkar, H. S. (2012). Particle size determination of nasal drug delivery system: A review. International Journal of Pharmaceutical Sciences Review and Research, 17(1), 66–73.
    60. Santonocito, D., Vivero-Lopez, M., Lauro, M. R., Torrisi, C., Castelli, F., Sarpietro, M. G., & Puglia, C. (2022). Design of Nanotechnological Carriers for Ocular Delivery of Mangiferin: Preformulation Study. Molecules (Basel, Switzerland), 27(4). https://doi.org/10.3390/MOLECULES27041328
    61. Santos, P., Watkinson, A. C., Hadgraft, J., & Lane, M. E. (2008). Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacology and Physiology, 21(5), 246–259. https://doi.org/10.1159/000140228
    62. Sarkar, S., Ang, B. H., & Liew, C. V. (2014). Influence of starting material particle size on pellet surface roughness. AAPS PharmSciTech, 15(1), 131–139. https://doi.org/10.1208/S12249-013-0031-5
    63. Şenyiğit, T., Sonvico, F., Rossi, A., Tekmen, I., Santi, P., Colombo, P., Nicoli, S., & Özer, Ö. (2016). In Vivo Assessment of Clobetasol Propionate-Loaded Lecithin-Chitosan Nanoparticles for Skin Delivery. International Journal of Molecular Sciences, 18(1). https://doi.org/10.3390/IJMS18010032
    64. Shah, S. M., Ashtikar, M., Jain, A. S., Makhija, D. T., Nikam, Y., Gude, R. P., Steiniger, F., Jagtap, A. A., Nagarsenker, M. S., & Fahr, A. (2015). LeciPlex, invasomes, and liposomes: A skin penetration study. International Journal of Pharmaceutics, 490(1–2), 391–403. https://doi.org/10.1016/j.ijpharm.2015.05.042
    65. Sharma, K., Somavarapu, S., Colombani, A., Govind, N., & Taylor, K. M. G. (2012). Crosslinked chitosan nanoparticle formulations for delivery from pressurized metered dose inhalers. European Journal of Pharmaceutics and Biopharmaceutics, 81(1), 74–81. https://doi.org/10.1016/j.ejpb.2011.12.014
    66. Shekunov, B. Y., Chattopadhyay, P., Tong, H. H. Y., & Chow, A. H. L. (2007). Particle size analysis in pharmaceutics: Principles, methods and applications. Pharmaceutical Research, 24(2), 203–227. https://doi.org/10.1007/S11095-006-9146-7/METRICS
    67. Shetty, P. K., Venuvanka, V., Jagani, H. V., Chethan, G. H., Ligade, V. S., Musmade, P. B., Nayak, U. Y., Reddy, M. S., Kalthur, G., Udupa, N., Rao, C. M., & Mutalik, S. (2015). Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. International Journal of Nanomedicine, 10, 6477–6491. https://doi.org/10.2147/IJN.S90964
    68. Siafaka, P., Betsiou, M., Tsolou, A., Angelou, E., Agianian, B., Koffa, M., Chaitidou, S., Karavas, E., Avgoustakis, K., & Bikiaris, D. (2015). Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. Journal of Materials Science: Materials in Medicine, 26(12), 1–14. https://doi.org/10.1007/s10856-015-5609-x
    69. Sorino, C., Negri, S., Spanevello, A., Visca, D., & Scichilone, N. (2020). Inhalation therapy devices for the treatment of obstructive lung diseases: The history of inhalers towards the ideal inhaler. European Journal of Internal Medicine, 75(January), 15–18. https://doi.org/10.1016/j.ejim.2020.02.023
    70. Souza, J. G., Dias, K., Pereira, T. A., Bernardi, D. S., & Lopez, R. F. V. (2014). Topical delivery of ocular therapeutics: Carrier systems and physical methods. Journal of Pharmacy and Pharmacology, 66(4), 507–530. https://doi.org/10.1111/jphp.12132
    71. Špaglová, M., Matušková, M., Lawson, M. K., Cuchorová, M., Cierna, M., Krchňák, D., Mikušová, V., Piestanský, J., & Mikuš, P. (2023). Technological Processing of Dried Powdered Rosehips to Tablets Through Wet Granulation. European Pharmaceutical Journal, 70(1), 12–20. https://doi.org/10.2478/AFPUC-2023-0061
    72. Spasoff, A., Bennis, A., Atkinson, S., Elliott, C., Freund, E., & Narhi, L. (2018). A Risk- and Science-Based Approach to the Acceptance Sampling Plan Inspection of Protein Parenteral Products. Journal of Pharmaceutical Sciences, 107(9), 2306–2309. https://doi.org/10.1016/j.xphs.2018.05.007
    73. Sun, C. C., & Davé, R. N. (2022). Crystal and Particle Engineering – An Indispensable Tool for Developing and Manufacturing Quality Pharmaceutical Products. Pharmaceutical Research, 39(12), 3041–3045. https://doi.org/10.1007/s11095-022-03449-x
    74. Sun, J., Zhang, S., Jiang, S., Bai, W., Liu, F., Yuan, H., Ji, J., Luo, J., Han, G., Chen, L., Jin, Y., Hu, P., Yu, L., & Yang, X. (2016). Gadolinium-loaded solid lipid nanoparticles as a tumor-absorbable contrast agent for early diagnosis of colorectal tumors using magnetic resonance colonography. Journal of Biomedical Nanotechnology, 12(9), 1709–1723. https://doi.org/10.1166/jbn.2016.2285
    75. Teixeira, M. C., Carbone, C., & Souto, E. B. (2017). Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Progress in Lipid Research, 68, 1–11. https://doi.org/10.1016/j.plipres.2017.07.001
    76. Toropainen, E., Fraser-Miller, S. J., Novakovic, D., Del Amo, E. M., Vellonen, K. S., Ruponen, M., Viitala, T., Korhonen, O., Auriola, S., Hellinen, L., Reinisalo, M., Tengvall, U., Choi, S., Absar, M., Strachan, C., & Urtti, A. (2021). Biopharmaceutics of Topical Ophthalmic Suspensions: Importance of Viscosity and Particle Size in Ocular Absorption of Indomethacin. Pharmaceutics, 13(4). https://doi.org/10.3390/PHARMACEUTICS13040452
    77. Uddin, M., Mamun, A., Kabir, M., Setu, J., Zaman, S., Begum, Y., & Amran, M. (2017). Quality Control Tests for Ophthalmic Pharmaceuticals: Pharmacopoeial Standards and Specifications. Journal of Advances in Medical and Pharmaceutical Sciences, 14(2), 1–17. https://doi.org/10.9734/jamps/2017/33924
    78. Vitorino, C., Almeida, A., Sousa, J., Lamarche, I., Gobin, P., Marchand, S., Couet, W., Olivier, J. C., & Pais, A. (2014). Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: In vitro vs. in vivo studies. European Journal of Pharmaceutics and Biopharmaceutics, 86(2), 133–144. https://doi.org/10.1016/j.ejpb.2013.12.004
    79. Vo, A., Feng, X., Patel, D., Mohammad, A., Kozak, D., Choi, S., Ashraf, M., & Xu, X. (2020). Factors affecting the particle size distribution and rheology of brinzolamide ophthalmic suspensions. International Journal of Pharmaceutics, 586, 119495. https://doi.org/10.1016/J.IJPHARM.2020.119495
    80. Vrignaud, S., Benoit, J. P., & Saulnier, P. (2011). Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials, 32(33), 8593–8604. https://doi.org/10.1016/j.biomaterials.2011.07.057
    81. Winter, E., Pizzol, C. D., Locatelli, C., & Crezkynski-Pasa, T. B. (2016). Development and evaluation of lipid nanoparticles for drug delivery: Study of toxicity in vitro and in vivo. Journal of Nanoscience and Nanotechnology, 16(2), 1321–1330. https://doi.org/10.1166/jnn.2016.11667
    82. Wissing, S. A., Kayser, O., & Müller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257–1272. https://doi.org/10.1016/j.addr.2003.12.002
    83. Xiang, H., Xu, S., Li, J., Pan, S., & Miao, X. (2022). Particle Size Effect of Curcumin Nanocrystals on Transdermal and Transfollicular Penetration by Hyaluronic Acid-Dissolving Microneedle Delivery. Pharmaceuticals (Basel, Switzerland), 15(2). https://doi.org/10.3390/PH15020206
    84. Xu, F., Huang, X., Wang, Y., & Zhou, S. (2020). A Size-Changeable Collagenase-Modified Nanoscavenger for Increasing Penetration and Retention of Nanomedicine in Deep Tumor Tissue. Advanced Materials, 32(16), 1–12. https://doi.org/10.1002/adma.201906745
    85. Yuniarsih, N., Putriana, A., Nurunnisa, I., Akbar Fadilla, R., & Putri Pratiwi, T. (2023). Drug delivery system in ophthalmic preparations: Literature Review Article, 1984–1994.
    86. Zhang, Y. T., Han, M. Q., Shen, L. N., Zhao, J. H., & Feng, N. P. (2015). Solid lipid nanoparticles formulated for transdermal aconitine administration and evaluated In Vitro and In Vivo. Journal of Biomedical Nanotechnology, 11(2), 351–361. https://doi.org/10.1166/jbn.2015.1902
    87. Zhou, X., Hao, Y., Yuan, L., Pradhan, S., Shrestha, K., Pradhan, O., Liu, H., & Li, W. (2018). Nano-formulations for transdermal drug delivery: A review. Chinese Chemical Letters, 29(12), 1713–1724. https://doi.org/10.1016/J.CCLET.2018.10.037
    88. Zhu, K., Zhu, Z., Zhou, H., Zhang, J., & Liu, S. (2017). Precisely installing gold nanoparticles at the core/shell interface of micellar assemblies of triblock copolymers. Chinese Chemical Letters, 28(6), 1276–1284. https://doi.org/10.1016/j.cclet.2017.03.020
    89. Zidan, A. S., Hosny, K. M., Ahmed, O. A. A., & Fahmy, U. A. (2016). Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Delivery, 23(5), 1536–1549. https://doi.org/10.3109/10717544.2014.980896

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Ainurofiq, A., Suryanto, A. A., Beltiartono, B. S., Merdekawati, N. A., Ardiyani, N. P., Farohma, Q. Y. C., Budiman, A., Wardhana, Y. W., & Nugraha, Y. P. (2025). Literature review: The role of particle size distribution in drug delivery. Multidisciplinary Reviews, 8(9), 2025269. https://doi.org/10.31893/multirev.2025269
  • Article viewed - 198
  • PDF downloaded - 50