• Abstract

    Global agriculture currently suffers from pollution caused by the widespread use of chemical fertilizers and pesticides. These agrochemicals, when consumed in food, can harm human health (e.g. increasing risks of cancer and thyroid disorders) and damage the environment by reducing soil fertility, among other effects. Thus, there is a high demand for biological agents, such as microorganisms, that could partially or fully replace these agrochemicals.Plant growth-promoting rhizobacteria (PGPR) are promising in this regard, as they can enhance plant growth and productivity sustainably. These bacteria promote plant growth and development through both direct and indirect mechanisms. Directly, PGPR increase plant growth by making phosphorus, nitrogen, and other essential minerals more available to plants, as well as by regulating plant hormone levels. Indirectly, PGPR inhibit pathogenic microbes that otherwise hinder plant growth and development, for instance, through the production of siderophores. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. Studies indicate that PGPR can improve plant health and yield across a variety of plant species, under both favourable and challenging conditions. As a result, PGPR have the potential to reduce the global reliance on harmful agricultural chemicals that disrupt environmental health. Additionally, the demand for PGPR as biofertilizers and biopesticides is growing globally, further highlighting their potential as powerful alternatives in sustainable agriculture. Numerous bacteria act as PGPRs, which have been described in the literature as effective in enhancing plant growth. In order to improve the efficacy of PGPRs, it is important to study their characteristics and mode of application since there is a gap between their mode of action (mechanism) for plant growth and their role as biofertilizers.

  • References

    1. Abbasniayzare, S. K., Sedaghathoor, S., & Dahkaei, M. N. P. (2012). Effect of biofertilizer application on growth parameters of Spathiphyllum illusion. American-Eurasian Journal of Agricultural & Environmental Science, 12(5), 669–673. https://idosi.org/aejaes/jaes12(5)12/18.pdf
    2. Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173–181. https://doi.org/10.1016/j.micres.2006.04.001
    3. Alori, E. T., Adekiya, A. O., & Adegbite, K. A. (2020). Impact of agricultural practices on soil health. In B. Giri & A. Varma (Eds.), Soil health (Vol. 59, pp. 1–20). Springer. https://doi.org/10.1007/978-3-030-44364-1
    4. Arshad, M., & Frankenberger, W. T. (1991). Microbial production of plant hormones. Plant and Soil, 133(1), 1–8. https://doi.org/10.1007/BF00011893
    5. Arshad, M., & Frankenberger, W. T. (1998). Plant growth-regulating substances in the rhizosphere: Microbial production and functions. Advances in Agronomy, 62, 45–151. https://doi.org/10.1016/S0065-2113(08)60567-2
    6. Bashan, Y., & Levanony, H. (1991). Alterations in membrane potential and in proton efflux in plant roots induced by Azospirillum brasilense. Plant and Soil, 137(1), 99–103. https://doi.org/10.1007/BF02187439
    7. Bashan, Y., Holguín, G., & Ferrera-Cerrato, R. (1996a). Interacciones entre plantas y microorganismos benéficos. Terra, 14(2), 159–194. http://www.scielo.org.co/pdf/rudca/v14n2/v14n2a03.pdf
    8. Bashan, Y., Holguín, G., & Ferrera-Cerrato, R. (1996b). Interacciones entre plantas y microorganismos benéficos. II. Bacterias asociativas de la rizosfera. Terra, 14(2), 195–210. https://www.redalyc.org/pdf/573/57322211.pdf
    9. Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140
    10. Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 66. https://doi.org/10.1186/1475-2859-13-66
    11. Bhowmik, S. N., & Das, A. (2018). Biofertilizers: A sustainable approach for pulse production. In R. S. Meena, A. Das, G. S. Yadav, & R. Lal (Eds.), Legumes for soil health and sustainable management (pp. 1–20). Springer. https://doi.org/10.1007/978-981-13-0253-4_14
    12. Boonjawat, J., Chaisiri, P., Limpananont, J., Soontaros, S., Pongsawasdi, P., Chaopongpang, S., Pornpattkul, S., Wongwaitayakul, B., & Sangduan, L. (1991). Biology of nitrogen-fixing rhizobacteria. Plant and Soil, 137(1), 119–125. https://www.jstor.org/stable/42937177
    13. Bowen, G. D., & Rovira, A. D. (1999). The rhizosphere and its management to improve plant growth. Advances in Agronomy, 66, 1–102. https://doi.org/10.1016/S0065-2113(08)60425-3
    14. Bravo, A., Likitvivatanavong, S., Gill, S., & Soberon, M. (2011). Bacillus thuringiensis: A story of a successful bio-insecticide. Insect Biochemistry and Molecular Biology, 41(7), 423–431. https://doi.org/10.1016/j.ibmb.2011.02.006
    15. Brown, M. E. (1972). Plant growth substances produced by microorganisms in soil and rhizosphere. Journal of Applied Bacteriology, 35(3), 443–451. https://doi.org/10.1111/j.1365-2672.1972.tb03721.x
    16. Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237–245. https://doi.org/10.1139/w99-143
    17. Chalk, P. M. (1991). The contribution of associative and symbiotic nitrogen fixation to the nitrogen nutrition of non-legumes. Plant and Soil, 132(1), 29–39. https://doi.org/10.1007/BF00011009
    18. Chanway, C. P. (1997). Inoculation of tree roots with plant growth promoting soil bacteria: An emerging technology for reforestation. Forest Science, 43(1), 99–111. https://doi.org/10.1007/978-94-017-2313-8_3
    19. Chowdhury, R. A., Bagchi, A., & Sengupta, C. (2016). Isolation and characterization of plant growth promoting rhizobacteria (PGPR) from agricultural field and their potential role on germination and growth of spinach (Spinacia oleracea L.) plants. International Journal of Current Agricultural Sciences, 6(10), 128–131. https://doi.org/10.9734/ajaar/2023/v22i1431
    20. Cornish, A. S., & Page, W. J. (2000). Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Applied and Environmental Microbiology, 66(4), 1580–1586. https://doi.org/10.1128/AEM.66.4.1580-1586.2000
    21. Crowley, D. E., Reid, C. P. P., & Szaniszlo, P. J. (1988). Utilization of microbial siderophores in iron acquisition by oat. Plant Physiology, 87(3), 680–685. https://doi.org/10.1104/pp.87.3.680
    22. Crowley, D. E., Wang, Y. C., Reid, C. P. P., & Szaniszlo, P. J. (1991). Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant and Soil, 130(1), 179–198. https://doi.org/10.1007/BF00011873
    23. de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms, 11(4), 1088. https://doi.org/10.3390/microorganisms11041088
    24. De la Fuente Cantó, C., Simonin, M., King, E., Moulin, L., Bennett, M. J., Castrillo, G., & Laplaze, L. (2020). An extended root phenotype: The rhizosphere, its formation and impacts on plant fitness. The Plant Journal, 103(3), 951–964. https://doi.org/10.1111/tpj.14781
    25. Diagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V., & Svistoonoff, S. (2020). Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity, 12(10), 370. https://doi.org/10.3390/d12100370
    26. Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., & Vanderleyden, J. (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strain altered in IAA production on wheat. Plant and Soil, 212(1), 155–164. https://doi.org/10.1023/A:1004658000815
    27. Döbereiner, J., Urquiaga, S., Boddey, R. M., & Ahmad, N. (1995). Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertilizer Research, 42(1–3), 339–346. https://doi.org/10.1007/BF00750524
    28. Dutta, S. (2015). Biopesticides: An ecofriendly approach for pest control. World Journal of Pharmacy and Pharmaceutical Sciences, 4(6), 250–265. https://www.scirp.org/reference/referencespapers?referenceid=2295956
    29. Elmerich, C., Zimmer, W., & Vieille, C. (1992). Associative nitrogen fixing bacteria. In G. Stacey, R. H. Burris, & H. J. Evans (Eds.), Biological nitrogen fixation (pp. 212–258). Chapman and Hall.
    30. Fett, W. F., Osman, S. F., & Dunn, M. F. (1987). Auxin production by plant-pathogenic pseudomonads and xanthomonads. Applied and Environmental Microbiology, 53(8), 1839–1845. https://doi.org/10.1128/aem.53.8.1839-1845.1987
    31. Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
    32. Fu, B., Chen, L., Huang, H., Qu, P., & Wei, Z. (2021). Impacts of crop residues on soil health: A review. Environmental Pollution and Bioavailability, 33(1), 164–173. https://doi.org/10.1080/26395940.2021.1948354
    33. Gaudin, V., Vrain, T., & Jouanin, L. (1994). Bacterial genes modifying hormonal balances in plants. Plant Physiology and Biochemistry, 32(1), 11–29. https://www.semanticscholar.org/paper/Bacterial-genes-modifying-hormonal-balances-in-Gaudin-Vrain/7040c197b6bd0e0fc6fe77822447c917664876e5
    34. Gupta, S., & Dikshit, A. K. (2010). Biopesticides: An eco-friendly approach for pest control. Journal of Biopesticides, 3(1), 186–188. https://www.jbiopest.com/users/LW8/efiles/Suman_Gupta_V31.pdf
    35. Höfte, M., Seong, K. Y., Jurkevitch, E., & Verstraete, W. (1991). Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK2: Ecological significance in soil. Plant and Soil, 130(1), 249–257. https://doi.org/10.1007/BF00011880
    36. Husson, O., Sarthou, J. P., Bousset, L., Ratnadass, A., Schmidt, H. P., Kempf, J., Husson, B., Tingry, S., Aubertot, J. N., & Deguine, J. P. (2021). Soil and plant health in relation to dynamic sustainment of Eh and pH homeostasis: A review. Plant and Soil, 466(1–2), 391–447. https://doi.org/10.1007/s11104-021-05034-4
    37. Itelima, J. U., Bang, W. J., & Onyimba, I. A. (2018). A review: Biofertilizer; a key player in enhancing soil fertility and crop productivity. Journal of Microbiology and Biotechnology, 2(1), 22–28. https://directresearchpublisher.org/drjafs/files/2019/07/Itelima-et-al.pdf
    38. Jensen, V., & Holm, E. (1975). Associative growth of nitrogen-fixing bacteria with other microorganisms. In W. D. P. Stewart (Ed.), Nitrogen fixation by free-living microorganisms (pp. 101–120). Cambridge University Press.
    39. Jones, D. L., Darrah, P. R., & Kochian, L. V. (1996). Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil, 180(1), 57–66. https://doi.org/10.1007/BF00015411
    40. Kumar, S., & Singh, A. (2015). Biopesticides: Present status and the future prospects. Journal of Fertilizers & Pesticides, 6(2), 100–129. https://doi.org/10.4172/2471-2728.1000e129
    41. Kumar, V., & Pawar, K. (2018). A review on soil health and fertility management in organic agriculture through green manuring. Journal of Pharmacognosy and Phytochemistry, 7(1), 3213–3217. https://www.phytojournal.com/archives/2018/vol7issue1S/PartAY/SP-7-1-897-969.pdf
    42. Laishram, J., Saxena, K. G., Maikhuri, R. K., & Rao, K. S. (2012). Soil quality and soil health: A review. Journal of Environmental Protection & Ecology, 38(1), 19–37. https://www.researchgate.net/publication/232237296_Soil_quality_and_soil_health_A_review
    43. Liu, R. C., Xiao, Z. Y., Hashem, A., AbdAllah, E. F., & Wu, Q. S. (2021). Mycorrhizal fungal diversity and its relationship with soil properties. Agriculture, 11(6), 470. https://doi.org/10.3390/agriculture11060470
    44. Liu, Z., Jiao, X., Lu, S., Zhu, C., Zhai, Y., & Guo, W. (2019). Effects of winter irrigation on soil salinity and jujube growth in arid regions. PLoS ONE, 14(6), e0218622. https://doi.org/10.1371/journal.pone.0218622
    45. Lugtenberg, B. J. J. (2015). Introduction to plant-microbe interactions. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 1–2). Springer. https://doi.org/10.1007/978-3-319-08575-3
    46. Mitra, D., Djebaili, R., Pellegrini, M., Mahakur, B., Sarker, A., Chaudhary, P., Khoshru, B., Gallo, M. D., Kitouni, M., & Barik, D. P. (2021). Arbuscular mycorrhizal symbiosis: Plant growth improvement and induction of resistance under stressful conditions. Journal of Plant Nutrition, 44(13), 1993–2028. https://doi.org/10.1080/01904167.2021.1884706
    47. Mohanty, P., Singh, P. K., Chakraborty, D., Mishra, S., & Pattnaik, R. (2021). Insight into the role of PGPR in sustainable agriculture and environment. Frontiers in Sustainable Food Systems, 5, 667150. https://doi.org/10.3389/fsufs.2021.667150
    48. Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Aulakh, M. S., & Yagi, K. (2016). World’s soils are under threat. Soil, 2(1), 79–82. https://doi.org/10.5194/soil-2-79-2016
    49. Newswire, P. R. (2017). Global markets for biopesticides. Retrieved from https://www.prnewswire.com/news-releases/global-markets-for-biopesticides-300385145.html
    50. Nieto, K. F., & Frankenberger, W. T. (1991). Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the vegetative growth of Zea mays. Plant and Soil, 135(1), 213–221. https://doi.org/10.1007/BF00010909
    51. Okon, G., Okon, E., & Glory, I. (2024). Effect of bioremediation on early seedling growth of Amaranthus hybridus L. grown on palm oil mill effluent polluted soil. International Journal of Biological Research, 2(2), 84–86. https://doi.org/10.14419/ijbr.v2i2.3170
    52. Ortiz, A., & Sansinenea, E. (2021). Recent advancements for microorganisms and their natural compounds useful in agriculture. Applied Microbiology and Biotechnology, 105(3), 891–897. https://doi.org/10.1007/s00253-020-11030-y
    53. Paula, M. A., Reis, V. M., & Döbereiner, J. (1991). Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biology and Fertility of Soils, 11(2), 111–115. https://doi.org/10.1007/BF00336374
    54. Pérez-Montaño, F., Cynthia, A., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169(5), 325–336. https://doi.org/10.1016/j.micres.2013.09.011
    55. Riadh, K., Wided, M., Hans-Werner, K., & Chedly, A. (2010). Responses of halophytes to environmental stresses with special emphasis to salinity. Advances in Botanical Research, 53, 117–145. https://doi.org/10.1016/S0065-2296(10)53004-0
    56. Sarwar, M. (2015). Biopesticides: An effective and environmental friendly insect pests inhibitor line of action. International Journal of Engineering and Advanced Research Technology, 1(1), 10–15. https://www.ijeart.com/download_data/IJEART01108.pdf
    57. Schippers, B., Bakker, A. W., & Bakker, A. H. M. (1987). Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology, 25, 339–358. https://doi.org/10.1146/annurev.py.25.090187.002011
    58. Tarekegn, M. M., Salilih, F. Z., & Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture, 6(1), 1783174. https://doi.org/10.1080/23311932.2020.1783174
    59. Thakore, Y. (2006). The biopesticide market for global agricultural use. Industrial Biotechnology, 2(3), 192–208. https://doi.org/10.1089/ind.2006.2.194
    60. Utkhede, R. S., Koch, C. A., & Menzies, J. G. (1999). Rhizobacterial growth and yield promotion of cucumber plants inoculated with Pythium aphanidermatum. Canadian Journal of Plant Pathology, 21(3), 265–271. https://doi.org/10.1080/07060669909501189
    61. Van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81(7), 728–734. https://doi.org/10.1094/Phyto-81-728
    62. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules, 21(5), 573. https://doi.org/10.3390/molecules21050573
    63. Wang, D., Wang, C., Chen, Y., & Xie, Z. (2023). Developing plant-growth-promoting rhizobacteria: A crucial approach for achieving sustainable agriculture. Agronomy, 13(7), 1835. https://doi.org/10.3390/agronomy13071835
    64. Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321(1–2), 385–408. https://doi.org/10.1007/s11104-008-9686-1
    65. Wilson, H., Epton, H. A. S., & Sigee, D. C. (1992). Biological control of fire blight of hawthorn with fluorescent Pseudomonas spp. under protected conditions. Journal of Phytopathology, 136(1), 16–26. https://doi.org/10.1111/j.1439-0434.1992.tb01277.x
    66. Wirén, N. V., Römheld, V., Morel, J. L., Guckert, A., & Marschner, H. (1993). Influence of microorganisms on iron acquisition in maize. Soil Biology and Biochemistry, 25(3), 371–376. https://doi.org/10.1016/0038-0717(93)90134-7
    67. Yang, C. H., & Crowley, D. E. (2000). Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Applied and Environmental Microbiology, 66(1), 345–351. https://doi.org/10.1128/AEM.66.1.345-351.2000
    68. Zambrano-Mendoza, J. L., Sangoquiza-Caiza, C. A., Campaña-Cruz, D. F., & Yánez-Guzmán, C. F. (2021). Use of biofertilizers in agricultural production. In Technology in agriculture. IntechOpen. https://doi.org/10.5772/intechopen.98264
    69. Zdor, R. E., & Anderson, A. J. (1992). Influence of root colonizing bacteria on the defence responses of bean. Plant and Soil, 140(1), 99–107. https://doi.org/10.1007/BF00012811

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Prisa, D., & Jamal, A. (2025). Potential and applications of plant growth promoting rhizobacteria (PGPR). Multidisciplinary Reviews, 8(10), 2025317. https://doi.org/10.31893/multirev.2025317
  • Article viewed - 111
  • PDF downloaded - 59