• Abstract

    In the area of theragnostics, the use of artificial intelligence (AI) is supporting personalised medicine methods that merge therapeutic and diagnostic techniques, which is causing the sector to undergo a transition. An analysis of the historical backdrop, current condition, and promise of artificial intelligence-enhanced theragnostic systems is presented in this article. We investigate the underlying ideas of artificial intelligence, such as machine learning, deep learning, and neural networks, as well as their applications in a variety of medical fields, including cancer, pathology, medical imaging, cardiology, hypertension control, and diabetes management. The ability of artificial intelligence systems to integrate a wide variety of information, recognise trends, and enable real-time decision-making and patient monitoring all illustrate their competency. It is possible that personalised digital twins, which make use of adaptive learning algorithms and dynamic virtual models, might be used to optimise treatment regimens and anticipate the course of illness. Important prospects for the advancement of biomedical research and personalised therapy are presented by biochip technology that is driven by artificial intelligence. This technology includes gene chips, organ-on-a-chip systems, and biosensors. However, there are a number of obstacles that must be overcome before artificial intelligence can be effectively used in theragnostics. These obstacles include data security, privacy, algorithmic biases, legal frameworks, and patient acceptability. It is vital, in order to realise the full potential of AI-driven theragnostic techniques, to address these constraints by means of extensive validation, diversified datasets, explainable artificial intelligence, and clear communication. It is anticipated that the synergistic combination of artificial intelligence and theragnostics will revolutionise precision medicine as research continues to advance. This will make it possible to make more accurate diagnoses, achieve more tailored therapeutics, and achieve better patient outcomes.

  • References

    1. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. (2017). Massachusetts Medical Society, 377(25), 2506–2506. https://doi.org/10.1056/nejmx170008
    2. Abràmoff, M. D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J. C., & Niemeijer, M. (2016). Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Cadmus Press, 57(13), 5200–5200. https://doi.org/10.1167/iovs.16-19964
    3. Abu-Alrub, S., Strik, M., Ramirez, F. D., Moussaoui, N., Racine, H.-P., Marchand, H., Buliard, S., Haı̈ssaguerre, M., Ploux, S., & Bordachar, P. (2022). Smartwatch Electrocardiograms for Automated and Manual Diagnosis of Atrial Fibrillation: A Comparative Analysis of Three Models. Frontiers Media, 9. https://doi.org/10.3389/fcvm.2022.836375
    4. Acero, J. C., Margara, F., Marciniak, M., Rodero, C., Loncaric, F., Feng, Y., Gilbert, A., Fernandes, J. F., Bukhari, S. H. A., Wajdan, A., Martinez, M. V., Santos, M. S., Shamohammdi, M., Luo, H., Westphal, P., Leeson, P., DiAchille, P., Gurev, V., Mayr, M., … Lamata, P. (2020). The ‘Digital Twin’ to enable the vision of precision cardiology. Oxford University Press, 41(48), 4556–4564. https://doi.org/10.1093/eurheartj/ehaa159
    5. Acharya, U. R., Lim, C. M., Ng, E. Y. K., Chee, C., & Tamura, T. (2009). Computer-based detection of diabetes retinopathy stages using digital fundus images. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 223(5), 545–553. https://doi.org/10.1243/09544119JEIM486
    6. Adamson, A. S., & Welch, H. G. (2019). Machine Learning and the Cancer-Diagnosis Problem—No Gold Standard. Massachusetts Medical Society, 381(24), 2285–2287. https://doi.org/10.1056/nejmp1907407
    7. Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H. F., & van der Schaar, M. (2019a). Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PloS One, 14(5), e0213653. https://doi.org/10.1371/journal.pone.0213653
    8. Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H. F., & van der Schaar, M. (2019b). Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PloS One, 14(5), e0213653. https://doi.org/10.1371/journal.pone.0213653
    9. Al‐Alusi, M. A., Ding, E., McManus, D. D., & Lubitz, S. A. (2019, November). Wearing Your Heart on Your Sleeve: The Future of Cardiac Rhythm Monitoring. In Springer Science+Business Media (Vol. 21, Issue 12). https://doi.org/10.1007/s11886-019-1223-8
    10. Ali, M. E., Cheema, M. A., Hashem, T., Ulhaq, A., & Babar, M. A. (2024). Enabling Spatial Digital Twins: Technologies, Challenges, and Future Research Directions. Springer Science+Business Media. https://doi.org/10.1007/s41064-024-00301-2
    11. Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Yami, M. S. A., Harbi, S. A., & Albekairy, A. (2023, September). Revolutionizing healthcare: The role of artificial intelligence in clinical practice. In BioMed Central (Vol. 23, Issue 1). https://doi.org/10.1186/s12909-023-04698-z
    12. Altamimi, I., Altamimi, A., Alhumimidi, A. S., Altamimi, A., & Temsah, M.-H. (2023, June). Artificial Intelligence (AI) Chatbots in Medicine: A Supplement, Not a Substitute. In Cureus, Inc. https://doi.org/10.7759/cureus.40922
    13. Altyar, A. E., El-Sayed, A., Abdeen, A., Piscopo, M., Mousa, S. A., Najda, A., & Abdel‐Daim, M. M. (2022). Future regenerative medicine developments and their therapeutic applications. Elsevier BV, 158, 114131–114131. https://doi.org/10.1016/j.biopha.2022.114131
    14. An AI based Digital Score of Tumour-Immune Microenvironment Predicts Benefit to Maintenance Immunotherapy in Advanced Oesophagogastric Adenocarcinoma. (2024, February). https://doi.org/10.48550/arXiv.2402.19296
    15. Andersen, S., Davidsen, A. H., Schirmer, H., Melbye, H., Spigt, M., & Aviles-Solis, J. C. (2022). Interrater and intrarater agreement on heart murmurs. Scandinavian Journal of Primary Health Care, 40(4), 491–497. https://doi.org/10.1080/02813432.2022.2159204
    16. Arasu, V. A., Habel, L. A., Achacoso, N., Buist, D. S. M., Cord, J. B., Esserman, L. J., Hylton, N. M., Glymour, M. M., Kornak, J., Kushi, L. H., Lewis, D. A., Vincent, J.-L., Lydon, C., Miglioretti, D. L., Navarro, D. A., Pu, A. X., Shen, L., Sieh, W., Yoon, H.-C., & Lee, C. (2023). Comparison of Mammography AI Algorithms with a Clinical Risk Model for 5-year Breast Cancer Risk Prediction: An Observational Study. Radiological Society of North America, 307(5). https://doi.org/10.1148/radiol.222733
    17. Arcadu, F., Benmansour, F., Maunz, A., Willis, J., Haskova, Z., & Prunotto, M. (2019). Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digital Medicine, 2, 92. https://doi.org/10.1038/s41746-019-0172-3
    18. Arcadu, F., Benmansour, F., Maunz, A., Willis, J. R., Hašková, Z., & Prunotto, M. (2019). Deep learning algorithm predicts diabetic retinopathy progression in individual patients. Nature Portfolio, 2(1). https://doi.org/10.1038/s41746-019-0172-3
    19. Armengol, E., Palaudàries, A., & Plaza, E. (2001). Individual prognosis of diabetes long-term risks: A CBR approach. Methods of Information in Medicine, 40(1), 46–51.
    20. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. (2024, October). https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
    21. Arvaniti, E., Fricker, K. S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., Wey, N., Wild, P. J., Rüschoff, J. H., & Claassen, M. (2018). Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific Reports, 8(1), 12054. https://doi.org/10.1038/s41598-018-30535-1
    22. Ash, J. S. (2003). Some Unintended Consequences of Information Technology in Health Care: The Nature of Patient Care Information System-related Errors. Oxford University Press, 11(2), 104–112. https://doi.org/10.1197/jamia.m1471
    23. Attia, Z. I., Kapa, S., Lopez-Jimenez, F., McKie, P. M., Ladewig, D. J., Satam, G., Pellikka, P. A., Enriquez-Sarano, M., Noseworthy, P. A., Munger, T. M., Asirvatham, S. J., Scott, C. G., Carter, R. E., & Friedman, P. A. (2019). Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nature Medicine, 25(1), 70–74. https://doi.org/10.1038/s41591-018-0240-2
    24. Bachtiger, P., Petri, C. F., Scott, F. E., Ri Park, S., Kelshiker, M. A., Sahemey, H. K., Dumea, B., Alquero, R., Padam, P. S., Hatrick, I. R., Ali, A., Ribeiro, M., Cheung, W.-S., Bual, N., Rana, B., Shun-Shin, M., Kramer, D. B., Fragoyannis, A., Keene, D., … Peters, N. S. (2022). Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: A prospective, observational, multicentre study. The Lancet. Digital Health, 4(2), e117–e125. https://doi.org/10.1016/S2589-7500(21)00256-9
    25. Bakris, G. L., Ali, W., & Parati, G. (2019). ACC/AHA Versus ESC/ESH on Hypertension Guidelines. Elsevier BV, 73(23), 3018–3026. https://doi.org/10.1016/j.jacc.2019.03.507
    26. Bengio, Y., Hinton, G. E., Yao, A. C.-C., Song, D., Abbeel, P., Darrell, T., Harari, Y. N., Zhang, Y.-Q., Lan, X., Shalev‐Shwartz, S., Hadfield, G. K., Clune, J., Maharaj, T., Hutter, F., Baydin, A. G., McIlraith, S. A., Gao, Q., Acharya, A., Krueger, D., … Mindermann, S. (2024). Managing extreme AI risks amid rapid progress. American Association for the Advancement of Science, 384(6698), 842–845. https://doi.org/10.1126/science.adn0117
    27. Bennett, C. C., & Hauser, K. (2012). Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach. Elsevier BV, 57(1), 9–19. https://doi.org/10.1016/j.artmed.2012.12.003
    28. Bhaskaranand, M., Ramachandra, C., Bhat, S., Cuadros, J., Nittala, M. G., Sadda, S. R., & Solanki, K. (2019). The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes. Diabetes Technology & Therapeutics, 21(11), 635–643. https://doi.org/10.1089/dia.2019.0164
    29. Bhattacharya, B. S. (2023, July). Assistive Chatbots for healthcare: A succinct review. https://doi.org/10.36227/techrxiv.23741469.v1
    30. Bhattacharya, M., Lu, D.-Y., Kudchadkar, S. M., Greenland, G. V., Lingamaneni, P., Corona-Villalobos, C. P., Guan, Y., Marine, J. E., Olgin, J. E., Zimmerman, S., Abraham, T. P., Shatkay, H., & Abraham, M. R. (2019). Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model). The American Journal of Cardiology, 123(10), 1681–1689. https://doi.org/10.1016/j.amjcard.2019.02.022
    31. Bilgin, G. B., Bilgin, C., Burkett, B. J., Orme, J. J., Childs, D. S., Thorpe, M., Hálfdánarson, Þ. R., Johnson, G. B., Kendi, A. T., & Sartor, O. (2024). Theranostics and artificial intelligence: New frontiers in personalized medicine. Ivyspring International Publisher, 14(6), 2367–2378. https://doi.org/10.7150/thno.94788
    32. Bitencourt, A., Naranjo, I. D., Gullo, R. L., Saccarelli, C. R., & Pinker, K. (2021). AI-enhanced breast imaging: Where are we and where are we heading? European Journal of Radiology, 142. https://doi.org/10.1016/j.ejrad.2021.109882
    33. Blasiak, A., Khong, J., & Kee, T. (2019, January). CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence.
    34. Bødker, J. S., Sønderkær, M., Vesteghem, C., Schmitz, A., Brøndum, R. F., Sommer, M., Rytter, A. S., Nielsen, L. B., Madsen, J., Jensen, P., Pedersen, I. S., Grubach, L., Severinsen, M. T., Roug, A. S., El‐Galaly, T. C., Dybkær, K., & Bøgsted, M. (2020). Development of a Precision Medicine Workflow in Hematological Cancers, Aalborg University Hospital, Denmark. Multidisciplinary Digital Publishing Institute, 12(2), 312–312. https://doi.org/10.3390/cancers12020312
    35. Bonekamp, D., Kohl, S., Wiesenfarth, M., Schelb, P., Radtke, J. P., Götz, M., Kickingereder, P., Yaqubi, K., Hitthaler, B., Gählert, N., Kuder, T. A., Deister, F., Freitag, M., Hohenfellner, M., Hadaschik, B. A., Schlemmer, H.-P., & Maier-Hein, K. H. (2018). Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values. Radiology. https://doi.org/10.1148/radiol.2018173064
    36. Bora, A., Balasubramanian, S., Babenko, B., Virmani, S., Venugopalan, S., Mitani, A., de Oliveira Marinho, G., Cuadros, J., Ruamviboonsuk, P., Corrado, G. S., Peng, L., Webster, D. R., Varadarajan, A. V., Hammel, N., Liu, Y., & Bavishi, P. (2021). Predicting the risk of developing diabetic retinopathy using deep learning. The Lancet. Digital Health, 3(1), e10–e19. https://doi.org/10.1016/S2589-7500(20)30250-8
    37. Boughey, J. C., Hartmann, L. C., Anderson, S. S., Degnim, A. C., Vierkant, R. A., Reynolds, C., Frost, M. H., & Pankratz, V. S. (2010). Evaluation of the Tyrer-Cuzick (International Breast Cancer Intervention Study) Model for Breast Cancer Risk Prediction in Women With Atypical Hyperplasia. Lippincott Williams & Wilkins, 28(22), 3591–3596. https://doi.org/10.1200/jco.2010.28.0784
    38. Bradshaw, T., Huemann, Z., Hu, J., & Rahmim, A. (2023, May). A Guide to Cross-Validation for Artificial Intelligence in Medical Imaging. In Radiological Society of North America (Vol. 5, Issue 4). https://doi.org/10.1148/ryai.220232
    39. Breidthardt, T., Moreno-Weidmann, Z., Uthoff, H., Sabti, Z., Aeppli, S., Puelacher, C., Stallone, F., Twerenbold, R., Wildi, K., Kozhuharov, N., Wussler, D., Flores, D., Shrestha, S., Badertscher, P., Boeddinghaus, J., Nestelberger, T., Gimenez, M. R., Staub, D., Aschwanden, M., … Mueller, C. (2018). How accurate is clinical assessment of neck veins in the estimation of central venous pressure in acute heart failure? Insights from a prospective study. European Journal of Heart Failure, 20(7), 1160–1162. https://doi.org/10.1002/ejhf.1111
    40. Breugel, M. van, Fehrmann, R. S. N., Bügel, M., Rezwan, F. I., Holloway, J. W., Nawijn, M. C., Fontanella, S., Čustović, A., & Koppelman, G. H. (2023, August). Current state and prospects of artificial intelligence in allergy. In Wiley (Vol. 78, Issue 10, pp. 2623–2643). https://doi.org/10.1111/all.15849
    41. Brodovicz, K. G., McNaughton, K., Uemura, N., Meininger, G., Girman, C. J., & Yale, S. H. (2009). Reliability and feasibility of methods to quantitatively assess peripheral edema. Clinical Medicine & Research, 7(1–2), 21–31. https://doi.org/10.3121/cmr.2009.819
    42. Cai, C., Liu, Y., Li, Y., Shi, Y., Zou, H., Bao, Y., Shen, Y., Cui, X., Fu, C., & Jia, W. (2021). Effectiveness of quality of care for patients with type 2 diabetes in China: Findings from the Shanghai Integration Model (SIM). Higher Education Press, 16(1), 126–138. https://doi.org/10.1007/s11684-021-0897-7
    43. Camaradou, J., & Hogg, J. (2023). Commentary: Patient Perspectives on Artificial Intelligence; What have We Learned and How Should We Move Forward? Adis, Springer Healthcare, 40(6), 2563–2572. https://doi.org/10.1007/s12325-023-02511-3
    44. Cano-Espinosa, C., González, G., Washko, G. R., Cazorla, M., & Estépar, R. S. J. (2018). Automated Agatston Score Computation in non-ECG Gated CT Scans Using Deep Learning. Proceedings of SPIE--the International Society for Optical Engineering, 10574, 105742K. https://doi.org/10.1117/12.2293681
    45. Caoili, J., Mayorova, A., Sikes, D., Hickman, L. J., Plikaytis, B. B., & Shinnick, T. M. (2006). Evaluation of the TB-Biochip Oligonucleotide Microarray System for Rapid Detection of Rifampin Resistance in Mycobacterium tuberculosis. American Society for Microbiology, 44(7), 2378–2381. https://doi.org/10.1128/jcm.00439-06
    46. Carspecken, C. W., Sharek, P. J., Longhurst, C., & Pageler, N. M. (2013). A Clinical Case of Electronic Health Record Drug Alert Fatigue: Consequences for Patient Outcome. American Academy of Pediatrics, 131(6), e1970–e1973. https://doi.org/10.1542/peds.2012-3252
    47. Caws, M., & Drobniewski, F. (2001). Molecular Techniques in the Diagnosis of Mycobacterium tuberculosis and the Detection of Drug Resistance. Wiley, 953b(1), 138–145. https://doi.org/10.1111/j.1749-6632.2001.tb11371.x
    48. Cellina, M., Cè, M., Irmici, G., Ascenti, V., Caloro, E., Bianchi, L., Pellegrino, G., D’Amico, N., Papa, S., & Carrafiello, G. (2022). Artificial Intelligence in Emergency Radiology: Where Are We Going? Diagnostics, 12(12), Article 12. https://doi.org/10.3390/diagnostics12123223
    49. Chaikijurajai, T., Laffin, L. J., & Tang, W. H. W. (2020). Artificial Intelligence and Hypertension: Recent Advances and Future Outlook. Oxford University Press, 33(11), 967–974. https://doi.org/10.1093/ajh/hpaa102
    50. Challen, R., Denny, J. C., Pitt, M., Gompels, L., Edwards, T. L., & Tsaneva‐Atanasova, K. (2019). Artificial intelligence, bias and clinical safety. BMJ, 28(3), 231–237. https://doi.org/10.1136/bmjqs-2018-008370
    51. Chang, P., Grinband, J., Weinberg, B. D., Bardis, M., Khy, M., Cadena, G., Su, M.-Y., Cha, S., Filippi, C. G., Bota, D., Baldi, P., Poisson, L. M., Jain, R., & Chow, D. (2018). Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. American Journal of Neuroradiology, 39(7), 1201–1207. https://doi.org/10.3174/ajnr.A5667
    52. Chang, W., Liu, Y., Xiao, Y., Yuan, X., Xu, X., Zhang, S., & Zhou, S. (2019). A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data. Diagnostics (Basel, Switzerland), 9(4), 178. https://doi.org/10.3390/diagnostics9040178
    53. Chaudhuri, A., Pash, G., Hormuth, D. A., Lorenzo, G., Kapteyn, M. G., Wu, C., Lima, E. A. B. F., Yankeelov, T. E., & Willcox, K. (2023). Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas. Frontiers Media, 6. https://doi.org/10.3389/frai.2023.1222612
    54. Chen, S., Lu, J., Peng, D., Liu, F., Lu, W., Zhu, W., Zhou, J., & Jia, W. (2022). Effect of a Mobile Health Technology–Based Diabetes Education Program on Glucose Control in Patients With Type 2 Diabetes Initiating Premixed Insulin: A Prospective, Multicenter, Observational Study. American Diabetes Association, 46(1), e6–e7. https://doi.org/10.2337/dc22-0510
    55. Cheung, C. C., Krahn, A. D., & Andrade, J. G. (2018, May). The Emerging Role of Wearable Technologies in Detection of Arrhythmia. In Elsevier BV (Vol. 34, Issue 8, pp. 1083–1087). https://doi.org/10.1016/j.cjca.2018.05.003
    56. Chorba, J. S., Shapiro, A. M., Le, L., Maidens, J., Prince, J., Pham, S., Kanzawa, M. M., Barbosa, D. N., Currie, C., Brooks, C., White, B. E., Huskin, A., Paek, J., Geocaris, J., Elnathan, D., Ronquillo, R., Kim, R., Alam, Z. H., Mahadevan, V. S., … Thomas, J. D. (2021). Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform. Journal of the American Heart Association, 10(9), e019905. https://doi.org/10.1161/JAHA.120.019905
    57. Clark, M., & Bailey, S. (2024). Chatbots in Health Care: Connecting Patients to Information. 4(1). https://doi.org/10.51731/cjht.2024.818
    58. Comaniciu, D., Engel, K., Georgescu, B., & Mansi, T. (2016, June). Shaping the future through innovations: From medical imaging to precision medicine. In Elsevier BV (Vol. 33, pp. 19–26). https://doi.org/10.1016/j.media.2016.06.016
    59. Couture, H. D., Williams, L. A., Geradts, J., Nyante, S. J., Butler, E. N., Marron, J. S., Perou, C. M., Troester, M. A., & Niethammer, M. (2018). Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. Npj Breast Cancer, 4(1), 1–8. https://doi.org/10.1038/s41523-018-0079-1
    60. Crigger, E., Reinbold, K., Hanson, C., Kao, A., Blake, K., & Irons, M. (2022, January). Trustworthy Augmented Intelligence in Health Care. In Springer Science+Business Media (Vol. 46, Issue 2). https://doi.org/10.1007/s10916-021-01790-z
    61. Cui, F., Yue, Y., Zhang, Y., Zhang, Z., & Zhou, H. S. (2020). Advancing Biosensors with Machine Learning. American Chemical Society, 5(11), 3346–3364. https://doi.org/10.1021/acssensors.0c01424
    62. Cuocolo, R., Caruso, M., Perillo, T., Ugga, L., & Petretta, M. (2020). Machine Learning in oncology: A clinical appraisal. Elsevier BV, 481, 55–62. https://doi.org/10.1016/j.canlet.2020.03.032
    63. Cuocolo, R., Perillo, T., Rosa, E. D., Ugga, L., & Petretta, M. (2019). Current applications of big data and machine learning in cardiology. National Institutes of Health, 16(8), 601–607. https://doi.org/10.11909/j.issn.1671-5411.2019.08.002
    64. Currie, G., Hawk, K. E., Rohren, E., Vial, A., & Klein, R. (2019). Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. Elsevier BV, 50(4), 477–487. https://doi.org/10.1016/j.jmir.2019.09.005
    65. Currie, G., & Rohren, E. (2020). Intelligent Imaging in Nuclear Medicine: The Principles of Artificial Intelligence, Machine Learning and Deep Learning. Elsevier BV, 51(2), 102–111. https://doi.org/10.1053/j.semnuclmed.2020.08.002
    66. Cuschieri, A., Borg, N., & Zammit, C. (2022). Closed loop deep brain stimulation: A systematic scoping review. Elsevier BV, 223, 107516–107516. https://doi.org/10.1016/j.clineuro.2022.107516
    67. Cushman, C., Evans, G. W., Byington, R. P., Cutler, J. A., Simons‐Morton, D. G., Basile, J., Probstfield, J. L., Katz, L., Peterson, K., Friedewald, W. T., Buse, J. B., Bigger, J. T., & Gerstein, H. C. (2010). Effects of Intensive Blood-Pressure Control in Type 2 Diabetes Mellitus. Massachusetts Medical Society, 362(17), 1575–1585. https://doi.org/10.1056/nejmoa1001286
    68. Daghistani, T. A., Elshawi, R., Sakr, S., Ahmed, A. M., Al-Thwayee, A., & Al-Mallah, M. H. (2019). Predictors of in-hospital length of stay among cardiac patients: A machine learning approach. International Journal of Cardiology, 288, 140–147. https://doi.org/10.1016/j.ijcard.2019.01.046
    69. Dagliati, A., Marini, S., Sacchi, L., Cogni, G., Teliti, M., Tibollo, V., De Cata, P., Chiovato, L., & Bellazzi, R. (2018). Machine Learning Methods to Predict Diabetes Complications. Journal of Diabetes Science and Technology, 12(2), 295–302. https://doi.org/10.1177/1932296817706375
    70. Dai, L., Sheng, B., Chen, T.-L., Wu, Q., Liu, R., Cai, C., Wu, L., Yang, D., Hamzah, H., Liu, Y., Wang, X., Guan, Z., Yu, S., Li, T., Tang, Z., Ran, A. R., Che, H., Chen, H., Zheng, Y., … Jia, W. (2024). A deep learning system for predicting time to progression of diabetic retinopathy. Nature Portfolio. https://doi.org/10.1038/s41591-023-02702-z
    71. Dai, L., Wu, L., Li, H., Cai, C., Wu, Q., Kong, H., Liu, R., Wang, X., Hou, X., Liu, Y., Long, X., Wen, Y., Lu, L., Shen, Y., Chen, Y., Shen, D., Yang, X., Zou, H., Sheng, B., & Jia, W. (2021). A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nature Communications, 12(1), 3242. https://doi.org/10.1038/s41467-021-23458-5
    72. Davenport, T. H., & Glaser, J. (2022). Factors governing the adoption of artificial intelligence in healthcare providers. Springer Science+Business Media, 1(1). https://doi.org/10.1007/s44250-022-00004-8
    73. Deng, S., Li, C., Cao, J., Cui, Z., Du, J., Fu, Z., Yang, H., & Chen, P. (2023). Organ-on-a-chip meets artificial intelligence in drug evaluation. Ivyspring International Publisher, 13(13), 4526–4558. https://doi.org/10.7150/thno.87266
    74. Dov, D., Kovalsky, S. Z., Assaad, S., Cohen, A. A. P. J., Range, D. E., Henao, R., & Carin, L. (2020). Weakly Supervised Instance Learning for Thyroid Malignancy Prediction from Whole Slide Cytopathology Images (arXiv:1904.12739). arXiv. https://doi.org/10.48550/arXiv.1904.12739
    75. Dunn, H. P., Kang, C. J., Marks, S., Dunn, S. M., Healey, P. R., & White, A. J. (2023). Optimising fundoscopy practices across the medical spectrum: A focus group study. PloS One, 18(1), e0280937. https://doi.org/10.1371/journal.pone.0280937
    76. Duong, M. T., Rauschecker, A. M., & Mohan, S. (2020). Diverse Applications of Artificial Intelligence in Neuroradiology. Neuroimaging Clinics of North America, 30(4), 505–516. https://doi.org/10.1016/j.nic.2020.07.003
    77. Egan, B. M., Kjeldsen, S. E., Grassı, G., Esler, M., & Mancia, G. (2019). The global burden of hypertension exceeds 1.4 billion people. Lippincott Williams & Wilkins, 37(6), 1148–1153. https://doi.org/10.1097/hjh.0000000000002021
    78. Elgendi, M., Fletcher, R., Liang, Y., Howard, N., Lovell, N. H., Abbott, D., Lim, K., & Ward, R. (2019). The use of photoplethysmography for assessing hypertension. Nature Portfolio, 2(1). https://doi.org/10.1038/s41746-019-0136-7
    79. ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., León, J., Lyons, S. K., Perry, M. L., Prahalad, P., Pratley, R. E., Seley, J. J., Stanton, R. C., … Gabbay, R. A. (2022). 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes:Standards of Care in Diabetes—2023. American Diabetes Association, 46(Supplement_1), S68–S96. https://doi.org/10.2337/dc23-s005
    80. Fan, S., Ye, J., Xu, Q., Peng, R., Hu, B., Pei, Z., Yang, Z., & Xu, F. (2023). Digital health technology combining wearable gait sensors and machine learning improve the accuracy in prediction of frailty. Frontiers in Public Health, 11, 1169083. https://doi.org/10.3389/fpubh.2023.1169083
    81. FDA. (2024, October). Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
    82. Foundational Research Gaps and Future Directions for Digital Twins. (2023, December). https://doi.org/10.17226/26894
    83. Galloway, C. D., Valys, A. V., Shreibati, J. B., Treiman, D. L., Petterson, F. L., Gundotra, V. P., Albert, D. E., Attia, Z. I., Carter, R. E., Asirvatham, S. J., Ackerman, M. J., Noseworthy, P. A., Dillon, J. J., & Friedman, P. A. (2019). Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram. JAMA Cardiology, 4(5), 428–436. https://doi.org/10.1001/jamacardio.2019.0640
    84. Giles, F. (n.d.). Role of Artificial Intelligence in the Care of Patients with Non-Small Cell Lung Cancer.
    85. Golden, G., Popescu, C., Israel, S., Perlman, K., Armstrong, C., Fratila, R., Tanguay-Sela, M., & Benrimoh, D. (2024). Applying artificial intelligence to clinical decision support in mental health: What have we learned? Elsevier BV, 13(2), 100844–100844. https://doi.org/10.1016/j.hlpt.2024.100844
    86. Golino, H. F., Amaral, L. S. de B., Duarte, S. F. P., Gomes, C. M. A., Soares, T. de J., Dos Reis, L. A., & Santos, J. (2014). Predicting increased blood pressure using machine learning. Journal of Obesity, 2014, 637635. https://doi.org/10.1155/2014/637635
    87. Gorris, M., Hoogenboom, S. A., Wallace, M. B., & Hooft, J. E. van. (2020, October). Artificial intelligence for the management of pancreatic diseases. In Wiley (Vol. 33, Issue 2, pp. 231–241). https://doi.org/10.1111/den.13875
    88. Gruwez, H., Verbrugge, F. H., Proesmans, T., Evens, S., Vanacker, P., Rutgers, M. P., Vanhooren, G., Bertrand, P. B., Pison, L., Haemers, P., Vandervoort, P., & Nuyens, D. (2023). Smartphone-based atrial fibrillation screening in the general population: Feasibility and impact on medical treatment. Oxford University Press, 4(6), 464–472. https://doi.org/10.1093/ehjdh/ztad054
    89. Guan, Z., Li, H., Liu, R., Cai, C., Liu, Y., Li, J., Wang, X., Huang, S., Wu, L., Liu, D., Yu, S., Wang, Z., Shu, J., Hou, X., Yang, X., Jia, W., & Sheng, B. (2023). Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Elsevier BV, 4(10), 101213–101213. https://doi.org/10.1016/j.xcrm.2023.101213
    90. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P. C., Mega, J. L., & Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), 2402–2410. https://doi.org/10.1001/jama.2016.17216
    91. Guo, S., Yao, Y., Tang, Y., Xin, Z., Wu, D., Ni, C., Huang, J., Wei, Q., & Zhang, T. (2023, May). Radiation-induced tumor immune microenvironments and potential targets for combination therapy. In Springer Nature (Vol. 8, Issue 1). https://doi.org/10.1038/s41392-023-01462-z
    92. Gupta, P., Moghimi, M. J., Jeong, Y., Gupta, D., Inan, O. T., & Ayazi, F. (2020). Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals. Nature Portfolio, 3(1). https://doi.org/10.1038/s41746-020-0225-7
    93. Guthrie, N. L., Berman, M. A., Edwards, K. L., Appelbaum, K. J., Dey, S., Carpenter, J., Eisenberg, D. M., & Katz, D. L. (2019). Achieving Rapid Blood Pressure Control With Digital Therapeutics: Retrospective Cohort and Machine Learning Study. JMIR Cardio, 3(1), e13030. https://doi.org/10.2196/13030
    94. Gutiérrez-Martínez, J., Toledo-Peral, C. L., Mercado-Gutiérrez, J. A., Vera, A., & Leija, L. (2020). Neuroprosthesis Devices Based on Micro- and Nanosensors: A Systematic Review. Hindawi Publishing Corporation, 2020, 1–19. https://doi.org/10.1155/2020/8865889
    95. Hamm, C. A., Wang, C. J., Savic, L. J., Ferrante, M., Schobert, I., Schlachter, T., Lin, M., Duncan, J. S., Weinreb, J. C., Chapiro, J., & Letzen, B. (2019). Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI. European Radiology, 29(7), 3338–3347. https://doi.org/10.1007/s00330-019-06205-9
    96. Hardy, M., & Harvey, H. (2019, December). Artificial intelligence in diagnostic imaging: Impact on the radiography profession. In Wiley (Vol. 93, Issue 1108, pp. 20190840–20190840). https://doi.org/10.1259/bjr.20190840
    97. Hart, G. R., Roffman, D. A., Decker, R., & Deng, J. (2018). A multi-parameterized artificial neural network for lung cancer risk prediction. PLOS ONE, 13(10), e0205264. https://doi.org/10.1371/journal.pone.0205264
    98. Hassan, S., Tariq, A., Noreen, Z., Donia, A., Zaidi, S. Z. J., Bokhari, H., & Zhang, X. (2020). Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics. Multidisciplinary Digital Publishing Institute, 10(8), 509–509. https://doi.org/10.3390/diagnostics10080509
    99. Herent, P., Schmauch, B., Jehanno, P., Dehaene, O., Saillard, C., Balleyguier, C., Arfi-Rouche, J., & Jégou, S. (2019). Detection and characterization of MRI breast lesions using deep learning. Diagnostic and Interventional Imaging, 100(4), 219–225. https://doi.org/10.1016/j.diii.2019.02.008
    100. Hermanns, N., Ehrmann, D., Shapira, A., Kulzer, B., Schmitt, A., & Laffel, L. M. (2022). Coordination of glucose monitoring, self-care behaviour and mental health: Achieving precision monitoring in diabetes. Springer Science+Business Media, 65(11), 1883–1894. https://doi.org/10.1007/s00125-022-05685-7
    101. Holli-Helenius, K., Salminen, A., Rinta-Kiikka, I., Koskivuo, I., Brück, N., Boström, P., & Parkkola, R. (2017). MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes—A feasibility study. BMC Medical Imaging, 17(1), 69. https://doi.org/10.1186/s12880-017-0239-z
    102. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018, May). Artificial intelligence in radiology. In Nature Portfolio (Vol. 18, Issue 8, pp. 500–510). https://doi.org/10.1038/s41568-018-0016-5
    103. Howard, F. M., Dolezal, J. M., Kochanny, S., Khramtsova, G., Vickery, J., Srisuwananukorn, A., Woodard, A., Chen, H., Nanda, R., Perou, C. M., Olopade, O. I., Huo, D., & Pearson, A. T. (2023). Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence. Nature Portfolio, 9(1). https://doi.org/10.1038/s41523-023-00530-5
    104. Huang, G.-M., Huang, K.-Y., Lee, T.-Y., & Weng, J. (2015). An interpretable rule-based diagnostic classification of diabetic nephropathy among type 2 diabetes patients. BMC Bioinformatics, 16 Suppl 1(Suppl 1), S5. https://doi.org/10.1186/1471-2105-16-S1-S5
    105. Huang, J., Huth, C., Covic, M., Troll, M., Adam, J., Zukunft, S., Prehn, C., Wang, L., Nano, J., Scheerer, M. F., Neschen, S., Kastenmüller, G., Suhre, K., Laxy, M., Schliess, F., Gieger, C., Adamski, J., Hrabe de Angelis, M., Peters, A., & Wang-Sattler, R. (2020). Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes. Diabetes, 69(12), 2756–2765. https://doi.org/10.2337/db20-0586
    106. Huss, R., Raffler, J., & Märkl, B. (2023). Artificial intelligence and digital biomarker in precision pathology guiding immune therapy selection and precision oncology. Wiley, 6(7). https://doi.org/10.1002/cnr2.1796
    107. Ibrahim, A., Primakov, S., Beuque, M., Woodruff, H. C., Halilaj, I., Wu, G., Refaee, T., Granzier, R. W. Y., Widaatalla, Y., Hustinx, R., Mottaghy, F. M., & Lambin, P. (2020, June). Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. In Elsevier BV (Vol. 188, pp. 20–29). https://doi.org/10.1016/j.ymeth.2020.05.022
    108. Isin, A., & Ozdalili, S. (2017). Cardiac arrhythmia detection using deep learning. Procedia Computer Science, 120, 268–275. https://doi.org/10.1016/j.procs.2017.11.238
    109. Israel, A., & Grossman, E. (2017). Elevated High-Density Lipoprotein Cholesterol Is Associated with Hyponatremia in Hypertensive Patients. The American Journal of Medicine, 130(11), 1324.e7-1324.e13. https://doi.org/10.1016/j.amjmed.2017.05.030
    110. Jiang, B., Guo, N., Ge, Y., Zhang, L., Oudkerk, M., & Xie, X. (2020). Development and application of artificial intelligence in cardiac imaging. British Journal of Radiology, 93(1113), 20190812. https://doi.org/10.1259/bjr.20190812
    111. Johnson, K. B., Wei, W.-Q., Weeraratne, D., Frisse, M. E., Misulis, K. E., Rhee, K., Zhao, J., & Snowdon, J. (2020, September). Precision Medicine, AI, and the Future of Personalized Health Care. In Wiley (Vol. 14, Issue 1, pp. 86–93). https://doi.org/10.1111/cts.12884
    112. Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521
    113. Joung, J., Jung, C.-W., Lee, H.-C., Chae, M.-J., Kim, H.-S., Park, J., Shin, W.-Y., Kim, C., Lee, M., & Choi, C. (2023). Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations. Scientific Reports, 13(1), 8605. https://doi.org/10.1038/s41598-023-35492-y
    114. Kanegae, H., Suzuki, K., Fukatani, K., Ito, T., Harada, N., & Kario, K. (2020). Highly precise risk prediction model for new-onset hypertension using artificial intelligence techniques. Journal of Clinical Hypertension (Greenwich, Conn.), 22(3), 445–450. https://doi.org/10.1111/jch.13759
    115. Kee, T., Weiyan, C., Blasiak, A., Wang, P., Chong, J. K., Chen, J., Yeo, B. T. T., Ho, D., & Asplund, C. L. (2019). Harnessing CURATE.AI as a Digital Therapeutics Platform by Identifying N‐of‐1 Learning Trajectory Profiles. Wiley, 2(9). https://doi.org/10.1002/adtp.201900023
    116. Khalid, S. G., Zhang, J., Chen, F., & Zheng, D. (2018). Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches. Journal of Healthcare Engineering, 2018, 1548647. https://doi.org/10.1155/2018/1548647
    117. Khan, A. (2023). Transforming Healthcare through AI: Unleashing the Power of Personalized Medicine. 2(1), 67–77. https://doi.org/10.47709/ijmdsa.v2i1.2424
    118. Khan, A., Uddin, S., & Srinivasan, U. (2018). Comorbidity network for chronic disease: A novel approach to understand type 2 diabetes progression. International Journal of Medical Informatics, 115, 1–9. https://doi.org/10.1016/j.ijmedinf.2018.04.001
    119. Khandakar, A., Chowdhury, M. E. H., Reaz, M. B. I., Ali, S. H. M., Kiranyaz, S., Rahman, T., Chowdhury, M. H., Ayari, M. A., Alfkey, R., Bakar, A. A. A., Malik, R. A., & Hasan, A. (2022). A Novel Machine Learning Approach for Severity Classification of Diabetic Foot Complications Using Thermogram Images. Sensors, 22(11), Article 11. https://doi.org/10.3390/s22114249
    120. Khunte, A., Sangha, V., Oikonomou, E. K., Dhingra, L. S., Aminorroaya, A., Mortazavi, B. J., Coppi, A., Brandt, C., Krumholz, H. M., & Khera, R. (2023). Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices. Nature Portfolio, 6(1). https://doi.org/10.1038/s41746-023-00869-w
    121. Khurshid, S., Al-Alusi, M. A., Churchill, T. W., Guseh, J. S., & Ellinor, P. T. (2023). Accelerometer-Derived “Weekend Warrior” Physical Activity and Incident Cardiovascular Disease. JAMA, 330(3), 247–252. https://doi.org/10.1001/jama.2023.10875
    122. Kim, H., Lim, J., Kim, H.-G., Lim, Y., Seo, B. K., & Bae, M. S. (2023). Deep Learning Analysis of Mammography for Breast Cancer Risk Prediction in Asian Women. Multidisciplinary Digital Publishing Institute, 13(13), 2247–2247. https://doi.org/10.3390/diagnostics13132247
    123. Kim, R. B., Gryak, J., Mishra, A., Cui, C., Soroushmehr, S. M. R., Najarian, K., & Wrobel, J. S. (2020). Utilization of smartphone and tablet camera photographs to predict healing of diabetes-related foot ulcers. Computers in Biology and Medicine, 126, 104042. https://doi.org/10.1016/j.compbiomed.2020.104042
    124. Klauschen, F., Dippel, J., Keyl, P., Jurmeister, P., Bockmayr, M., Möck, A., Buchstab, O., Alber, M., Ruff, L., Montavon, G., & Müller, K.-R. (2023, October). Toward Explainable Artificial Intelligence for Precision Pathology. In Annual Reviews (Vol. 19, Issue 1, pp. 541–570). https://doi.org/10.1146/annurev-pathmechdis-051222-113147
    125. Koh, C. C., Degasperi, A., Zou, X., Momen, S., & Nik-Zainal, S. (2021). Mutational signatures: Emerging concepts, caveats and clinical applications. Nature Portfolio, 21(10), 619–637. https://doi.org/10.1038/s41568-021-00377-7
    126. Kohjitani, H., Koshimizu, H., Nakamura, K., & Okuno, Y. (2024). Recent developments in machine learning modeling methods for hypertension treatment. Springer Nature, 47(3), 700–707. https://doi.org/10.1038/s41440-023-01547-w
    127. Kraus, M., Saller, M. M., Baumbach, S. F., Neuerburg, C., Stumpf, U. C., Böcker, W., & Keppler, A. M. (2022). Prediction of Physical Frailty in Orthogeriatric Patients Using Sensor Insole-Based Gait Analysis and Machine Learning Algorithms: Cross-sectional Study. JMIR Medical Informatics, 10(1), e32724. https://doi.org/10.2196/32724
    128. Krittanawong, C., Johnson, K. W., Rosenson, R. S., Wang, Z., Aydar, M., Baber, U., Min, J. K., Tang, W. H. W., Halperin, J. L., & Narayan, S. M. (2019). Deep learning for cardiovascular medicine: A practical primer. Oxford University Press, 40(25), 2058–2073. https://doi.org/10.1093/eurheartj/ehz056
    129. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017, May). Artificial Intelligence in Precision Cardiovascular Medicine. In Elsevier BV (Vol. 69, Issue 21, pp. 2657–2664). https://doi.org/10.1016/j.jacc.2017.03.571
    130. Kwon, J.-M., Lee, Y., Lee, Y., Lee, S., & Park, J. (2018). An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. Journal of the American Heart Association, 7(13), e008678. https://doi.org/10.1161/JAHA.118.008678
    131. Labkoff, S. E., Oladimeji, B. J., Kannry, J., Solomonides, A., Leftwich, R., Koski, E., Joseph, A. L., López-González, M., Fleisher, L. A., Nolen, K., Dutta, S., Levy, D. R., Price, A., Barr, P., Hron, J. D., Lin, B., Srivastava, G., Pastor, N., Luque, U. S., … Quintana, Y. (2024). Toward a responsible future: Recommendations for AI-enabled clinical decision support. Oxford University Press. https://doi.org/10.1093/jamia/ocae209
    132. Lacson, R. C., Baker, B., Suresh, H., Andriole, K., Szolovits, P., & Lacson, E. (2019). Use of machine-learning algorithms to determine features of systolic blood pressure variability that predict poor outcomes in hypertensive patients. Clinical Kidney Journal, 12(2), 206–212. https://doi.org/10.1093/ckj/sfy049
    133. Ladbury, C., Amini, A., Govindarajan, A., Mambetsariev, I., Raz, D. J., Massarelli, E., Williams, T. M., Rodin, A. S., & Salgia, R. (2023). Integration of artificial intelligence in lung cancer: Rise of the machine. Elsevier BV, 4(2), 100933–100933. https://doi.org/10.1016/j.xcrm.2023.100933
    134. Laffin, L. J., & Bakris, G. L. (2018). Results of ACCORDIAN in ACCORD with lower blood pressure begetting lower mortality in patients with diabetes. Wiley, 20(6), 1335–1336. https://doi.org/10.1111/dom.13249
    135. Lagani, V., Chiarugi, F., Manousos, D., Verma, V., Fursse, J., Marias, K., & Tsamardinos, I. (2015). Realization of a service for the long-term risk assessment of diabetes-related complications. Journal of Diabetes and Its Complications, 29(5), 691–698. https://doi.org/10.1016/j.jdiacomp.2015.03.011
    136. Lam Po Tang, E. J., HajiRassouliha, A., Nash, M. P., Nielsen, P. M. F., Taberner, A. J., & Cakmak, Y. O. (2018). Non-contact Quantification of Jugular Venous Pulse Waveforms from Skin Displacements. Scientific Reports, 8(1), 17236. https://doi.org/10.1038/s41598-018-35483-4
    137. Langbein, T., Weber, W., & Eiber, M. (2019). Future of Theranostics: An Outlook on Precision Oncology in Nuclear Medicine. Society of Nuclear Medicine and Molecular Imaging, 60(Supplement 2), 13S-19S. https://doi.org/10.2967/jnumed.118.220566
    138. LeCun, Y., Bengio, Y., & Hinton, G. E. (2015). Deep learning. Nature Portfolio, 521(7553), 436–444. https://doi.org/10.1038/nature14539
    139. Lee, J.-G., Jun, S., Cho, Y.-W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep Learning in Medical Imaging: General Overview. Korean Society of Radiology, 18(4), 570–570. https://doi.org/10.3348/kjr.2017.18.4.570
    140. Levner, I., Drabycz, S., Roldan, G., De Robles, P., Cairncross, J. G., & Mitchell, R. (2009). Predicting MGMT Methylation Status of Glioblastomas from MRI Texture. In G.-Z. Yang, D. Hawkes, D. Rueckert, A. Noble, & C. Taylor (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009 (pp. 522–530). Springer. https://doi.org/10.1007/978-3-642-04271-3_64
    141. Li, X., Taratula, O., Taratula, O., Schumann, C., & Minko, T. (2017). LHRH-Targeted Drug Delivery Systems for Cancer Therapy. Mini Reviews in Medicinal Chemistry, 17(3), 258–267. https://doi.org/10.2174/1389557516666161013111155
    142. Li, Y., Jasani, F., Su, D., Zhang, D., Shi, L., Yi, S. S., & Pagán, J. A. (2019). Decoding Nonadherence to Hypertensive Medication in New York City: A Population Segmentation Approach. Journal of Primary Care & Community Health, 10, 2150132719829311. https://doi.org/10.1177/2150132719829311
    143. Li, Y.-H., Yang, Y., Wei, M., & Li, G. (2024, August). Innovation and challenges of artificial intelligence technology in personalized healthcare. In Nature Portfolio (Vol. 14, Issue 1). https://doi.org/10.1038/s41598-024-70073-7
    144. Li, Y.-H., Zhang, G.-G., & Wang, N. (2017). Systematic Characterization and Prediction of Human Hypertension Genes. Hypertension (Dallas, Tex.: 1979), 69(2), 349–355. https://doi.org/10.1161/HYPERTENSIONAHA.116.08573
    145. Liang, R., Wei, M., Evans, D. G., & Duan, X. (2014). Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chemical Communications (Cambridge, England), 50(91), 14071–14081. https://doi.org/10.1039/c4cc03118k
    146. Liang, Y., Chen, Z., Ward, R., & Elgendi, M. (2018). Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification. Biosensors, 8(4), 101. https://doi.org/10.3390/bios8040101
    147. Lin, P.-C., Tsai, Y.-S., Yeh, Y.-M., & Shen, M.-R. (2022). Cutting-Edge AI Technologies Meet Precision Medicine to Improve Cancer Care. Multidisciplinary Digital Publishing Institute, 12(8), 1133–1133. https://doi.org/10.3390/biom12081133
    148. Lin, S., Li, Z., Fu, B., Chen, S., Li, X., Wang, Y., Wang, X., Lv, B., Xu, B., Song, X., Zhang, Y.-J., Cheng, X., Huang, W., Pu, J., Zhang, Q., Xia, Y., Du, B., Ji, X., & Zheng, Z. (2020). Feasibility of using deep learning to detect coronary artery disease based on facial photo. European Heart Journal, 41(46), 4400–4411. https://doi.org/10.1093/eurheartj/ehaa640
    149. Liu, J., & Wang, Y. (2023). Advances in organ‐on‐a‐chip for the treatment of cardiovascular diseases. Wiley, 2(4). https://doi.org/10.1002/mba2.63
    150. Ljubic, B., Hai, A. A., Stanojević, M., Diaz, W., Polimac, D., Pavlovski, M., & Obradović, Z. (2020). Predicting complications of diabetes mellitus using advanced machine learning algorithms. Oxford University Press, 27(9), 1343–1351. https://doi.org/10.1093/jamia/ocaa120
    151. Ljubic, B., Hai, A. A., Stanojevic, M., Diaz, W., Polimac, D., Pavlovski, M., & Obradovic, Z. (2020). Predicting complications of diabetes mellitus using advanced machine learning algorithms. Journal of the American Medical Informatics Association: JAMIA, 27(9), 1343–1351. https://doi.org/10.1093/jamia/ocaa120
    152. Lorenzo, G., Ahmed, S. R., Hormuth, D. A., Vaughn, B., Kalpathy–Cramer, J., Solorio, L., Yankeelov, T. E., & Gómez, H. (2024, April). Patient-Specific, Mechanistic Models of Tumor Growth Incorporating Artificial Intelligence and Big Data. In Annual Reviews (Vol. 26, Issue 1, pp. 529–560). https://doi.org/10.1146/annurev-bioeng-081623-025834
    153. Lu, M. Y., Chen, B., Williamson, D. F. K., Chen, R. J., Zhao, M., Chow, A. K., Ikemura, K., Kim, A., Pouli, D., Patel, A., Soliman, A., Chen, C., Ding, T., Wang, J. J., Gerber, G. K., Liang, I., Le, L. P., Parwani, A. V., Weishaupt, L. L., & Mahmood, F. (2024). A Multimodal Generative AI Copilot for Human Pathology. Nature Portfolio. https://doi.org/10.1038/s41586-024-07618-3
    154. Lubitz, S. A., Faranesh, A. Z., Selvaggi, C., Atlas, S. J., McManus, D. D., Singer, D. E., Pagoto, S., McConnell, M. V., Pantelopoulos, A., & Foulkes, A. S. (2022). Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study. Circulation, 146(19), 1415–1424. https://doi.org/10.1161/CIRCULATIONAHA.122.060291
    155. Luo, H., Lamata, P., Bazin, S., Bautista, T., Barclay, N., Shahmohammadi, M., Lubrecht, J. M., Delhaas, T., & Prinzen, F. W. (2022). Smartphone as an electronic stethoscope: Factors influencing heart sound quality. European Heart Journal. Digital Health, 3(3), 473–480. https://doi.org/10.1093/ehjdh/ztac044
    156. Mackenzie, S. C., Sainsbury, C., & Wake, D. J. (2023, November). Diabetes and artificial intelligence beyond the closed loop: A review of the landscape, promise and challenges. In Springer Science+Business Media (Vol. 67, Issue 2, pp. 223–235). https://doi.org/10.1007/s00125-023-06038-8
    157. Madani, A., Arnaout, R., Mofrad, M., & Arnaout, R. (2018). Fast and accurate view classification of echocardiograms using deep learning. NPJ Digital Medicine, 1, 6. https://doi.org/10.1038/s41746-017-0013-1
    158. Mannhart, D., Lefebvre, B., Gardella, C., Henry, C., Serban, T., Knecht, S., Kühne, M., Sticherling, C., & Badertscher, P. (2023). Clinical validation of an artificial intelligence algorithm offering cross-platform detection of atrial fibrillation using smart device electrocardiograms. Elsevier BV, 116(5), 249–257. https://doi.org/10.1016/j.acvd.2023.04.003
    159. Mao, D., Liu, C., Wang, L., AI-Ouran, R., Deisseroth, C. A., Pasupuleti, S., Kim, S., Li, L., Rosenfeld, J. A., Meng, L., Burrage, L. C., Wangler, M. F., Yamamoto, S., Santana, M., Perez, V. L., Shukla, P., Eng, C. M., Lee, B., Yuan, B., … Liu, Z. (2024). AI-MARRVEL — A Knowledge-Driven AI System for Diagnosing Mendelian Disorders. 1(5). https://doi.org/10.1056/aioa2300009
    160. Marini, S., Trifoglio, E., Barbarini, N., Sambo, F., Camillo, B. D., Malovini, A., Manfrini, M., Cobelli, C., & Bellazzi, R. (2015). A Dynamic Bayesian Network model for long-term simulation of clinical complications in type 1 diabetes. Elsevier BV, 57, 369–376. https://doi.org/10.1016/j.jbi.2015.08.021
    161. Marini, S., Trifoglio, E., Barbarini, N., Sambo, F., Di Camillo, B., Malovini, A., Manfrini, M., Cobelli, C., & Bellazzi, R. (2015). A Dynamic Bayesian Network model for long-term simulation of clinical complications in type 1 diabetes. Journal of Biomedical Informatics, 57, 369–376. https://doi.org/10.1016/j.jbi.2015.08.021
    162. Marvao, A. de, Dawes, T. J. W., Howard, J. P., & O’Regan, D. P. (2020). Artificial intelligence and the cardiologist: What you need to know for 2020. BMJ, 106(5), 399–400. https://doi.org/10.1136/heartjnl-2019-316033
    163. Matsui, S., Maruhashi, T., Kihara, Y., & Higashi, Y. (2019). Giant multiple xanthomas in familial hypercholesterolaemia. European Heart Journal, 40(33), 2831. https://doi.org/10.1093/eurheartj/ehy827
    164. Maxwell, A., Li, R., Yang, B., Weng, H., Ou, A., Hong, H., Zhou, Z., Gong, P., & Zhang, C. (2017). Deep learning architectures for multi-label classification of intelligent health risk prediction. BMC Bioinformatics, 18(Suppl 14), 523. https://doi.org/10.1186/s12859-017-1898-z
    165. Mazurowski, M. A., Buda, M., Saha, A., & Bashir, M. R. (2018, December). Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. In Wiley (Vol. 49, Issue 4, pp. 939–954). https://doi.org/10.1002/jmri.26534
    166. McBee, M. P., Awan, O. A., Colucci, A., Ghobadi, C. W., Kadom, N., Kansagra, A. P., Tridandapani, S., & Auffermann, W. F. (2018). Deep Learning in Radiology. Elsevier BV, 25(11), 1472–1480. https://doi.org/10.1016/j.acra.2018.02.018
    167. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., … Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6
    168. Mervak, B. M., Fried, J. G., & Wasnik, A. P. (2023). A Review of the Clinical Applications of Artificial Intelligence in Abdominal Imaging. Diagnostics, 13(18), Article 18. https://doi.org/10.3390/diagnostics13182889
    169. Miao, F., Fu, N., Zhang, Y.-T., Ding, X.-R., Hong, X., He, Q., & Li, Y. (2017). A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques. IEEE Journal of Biomedical and Health Informatics, 21(6), 1730–1740. https://doi.org/10.1109/JBHI.2017.2691715
    170. Minar, M. R., & Naher, J. (2018, January). Recent Advances in Deep Learning: An Overview. In Cornell University. https://doi.org/10.48550/arxiv.1807.08169
    171. Ming, C., Viassolo, V., Probst-Hensch, N., Chappuis, P. O., Dinov, I. D., & Katapodi, M. C. (2019). Machine learning techniques for personalized breast cancer risk prediction: Comparison with the BCRAT and BOADICEA models. Breast Cancer Research, 21(1), 75. https://doi.org/10.1186/s13058-019-1158-4
    172. Mittal, S., Thakral, K., Singh, R., Vatsa, M., Glaser, T., Ferrer, C. C., & Hassner, T. (2024). On responsible machine learning datasets emphasizing fairness, privacy and regulatory norms with examples in biometrics and healthcare. Nature Portfolio. https://doi.org/10.1038/s42256-024-00874-y
    173. Mizuguchi, Y., Nakao, M., Nagai, T., Takahashi, Y., Abe, T., Kakinoki, S., Imagawa, S., Matsutani, K., Saito, T., Takahashi, M., Kato, Y., Komoriyama, H., Hagiwara, H., Hirata, K., Ogawa, T., Shimizu, T., Otsu, M., Chiyo, K., & Anzai, T. (2024). Machine learning-based gait analysis to predict clinical frailty scale in elderly patients with heart failure. European Heart Journal. Digital Health, 5(2), 152–162. https://doi.org/10.1093/ehjdh/ztad082
    174. Mohammadi, F. G., Shenavarmasouleh, F., & Arabnia, H. R. (2022, January). Applications of Machine Learning in Healthcare and Internet of Things (IOT): A Comprehensive Review. In Cornell University. https://doi.org/10.48550/arxiv.2202.02868
    175. Mohammadi, R., Jain, S., Agboola, S., Palacholla, R., Kamarthi, S., & Wallace, B. C. (2019). Learning to Identify Patients at Risk of Uncontrolled Hypertension Using Electronic Health Records Data. AMIA Joint Summits on Translational Science Proceedings. AMIA Joint Summits on Translational Science, 2019, 533–542.
    176. Monte-Moreno, E. (2011). Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artificial Intelligence in Medicine, 53(2), 127–138. https://doi.org/10.1016/j.artmed.2011.05.001
    177. Mortazavi, B. J., Downing, N. S., Bucholz, E. M., Dharmarajan, K., Manhapra, A., Li, S.-X., Negahban, S. N., & Krumholz, H. M. (2016). Analysis of Machine Learning Techniques for Heart Failure Readmissions. Circulation. Cardiovascular Quality and Outcomes, 9(6), 629–640. https://doi.org/10.1161/CIRCOUTCOMES.116.003039
    178. Moulik, S. K., Kotter, N., & Fishman, E. K. (2020). Applications of artificial intelligence in the emergency department. Springer Science+Business Media, 27(4), 355–358. https://doi.org/10.1007/s10140-020-01794-1
    179. Muhammad, W., Hart, G. R., Nartowt, B., Farrell, J. J., Johung, K., Liang, Y., & Deng, J. (2019). Pancreatic Cancer Prediction Through an Artificial Neural Network. Frontiers in Artificial Intelligence, 2. https://doi.org/10.3389/frai.2019.00002
    180. Muscogiuri, G., Volpato, V., Cau, R., Chiesa, M., Saba, L., Guglielmo, M., Senatieri, A., Chierchia, G., Pontone, G., Dell’Aversana, S., Schoepf, U. J., Andrews, M. G., Basile, P., Guaricci, A. I., Marra, P., Muraru, D., Badano, L. P., & Sironi, S. (2022). Application of AI in cardiovascular multimodality imaging. Heliyon, 8(10). https://doi.org/10.1016/j.heliyon.2022.e10872
    181. Nagpal, K., Foote, D., Liu, Y., Chen, P.-H. C., Wulczyn, E., Tan, F., Olson, N., Smith, J. L., Mohtashamian, A., Wren, J. H., Corrado, G. S., MacDonald, R., Peng, L. H., Amin, M. B., Evans, A. J., Sangoi, A. R., Mermel, C. H., Hipp, J. D., & Stumpe, M. C. (2019). Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. Npj Digital Medicine, 2(1), 1–10. https://doi.org/10.1038/s41746-019-0112-2
    182. Narang, A., Bae, R., Hong, H., Thomas, Y., Surette, S., Cadieu, C., Chaudhry, A., Martin, R. P., McCarthy, P. M., Rubenson, D. S., Goldstein, S., Little, S. H., Lang, R. M., Weissman, N. J., & Thomas, J. D. (2021). Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. JAMA Cardiology, 6(6), 624–632. https://doi.org/10.1001/jamacardio.2021.0185
    183. Narula, S., Shameer, K., Salem Omar, A. M., Dudley, J. T., & Sengupta, P. P. (2016). Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. Journal of the American College of Cardiology, 68(21), 2287–2295. https://doi.org/10.1016/j.jacc.2016.08.062
    184. Ngo, T. A., Lu, Z., & Carneiro, G. (2017). Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Medical Image Analysis, 35, 159–171. https://doi.org/10.1016/j.media.2016.05.009
    185. Novosad, P., Fonov, V., Collins, D. L., & Initiative†, A. D. N. (2020). Accurate and robust segmentation of neuroanatomy in T1-weighted MRI by combining spatial priors with deep convolutional neural networks. Human Brain Mapping, 41(2), 309–327. https://doi.org/10.1002/hbm.24803
    186. Ohta, Y., Yunaga, H., Kitao, S., Fukuda, T., & Ogawa, T. (2019). Detection and Classification of Myocardial Delayed Enhancement Patterns on MR Images with Deep Neural Networks: A Feasibility Study. Radiology. Artificial Intelligence, 1(3), e180061. https://doi.org/10.1148/ryai.2019180061
    187. Olczak, J., Fahlberg, N., Maki, A., Razavian, A. S., Jilert, A., Stark, A., Sköldenberg, O., & Gordon, M. (2017). Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthopaedica, 581–586. https://doi.org/10.1080/17453674.2017.1344459
    188. Ortíz, M., Ferrero, L., Iáñez, E., Azorín, J. M., & Contreras-Vidal, J. L. (2020). Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton. Frontiers Media, 8. https://doi.org/10.3389/fbioe.2020.00735
    189. Ozcan, B. B., Doğan, B. E., Mootz, A. R., Hayes, J. C., Seiler, S. J., Schopp, J. G., Kitchen, D. L., & Porembka, J. H. (2023). Breast Cancer Disparity and Outcomes in Underserved Women. Radiological Society of North America, 44(1). https://doi.org/10.1148/rg.230090
    190. Pantuck, A. J., Lee, D.-K., Kee, T., Wang, P., Lakhotia, S., Silverman, M. H., Mathis, C., Drakaki, A., Belldegrun, A. S., Ho, C.-M., & Ho, D. (2018). Modulating BET Bromodomain Inhibitor ZEN‐3694 and Enzalutamide Combination Dosing in a Metastatic Prostate Cancer Patient Using CURATE.AI, an Artificial Intelligence Platform. Wiley, 1(6). https://doi.org/10.1002/adtp.201800104
    191. Parastarfeizabadi, M., & Kouzani, A. Z. (2017). Advances in closed-loop deep brain stimulation devices. BioMed Central, 14(1). https://doi.org/10.1186/s12984-017-0295-1
    192. Parmar, C., Barry, J. D., Hosny, A., Quackenbush, J., & Aerts, H. J. W. L. (2018). Data Analysis Strategies in Medical Imaging. American Association for Cancer Research, 24(15), 3492–3499. https://doi.org/10.1158/1078-0432.ccr-18-0385
    193. Paudyal, R., Shah, A. D., Akin, O., Do, R. K. G., Konar, A. S., Hatzoglou, V., Mahmood, U., Lee, N., Wong, R. J., Banerjee, S., Shin, J., Veeraraghavan, H., & Shukla-Dave, A. (2023). Artificial Intelligence in CT and MR Imaging for Oncological Applications. Cancers, 15(9), Article 9. https://doi.org/10.3390/cancers15092573
    194. Pei, Z., Liu, J., Liu, M., Zhou, W., Yan, P., Wen, S., & Chen, Y. (2018a). Risk-Predicting Model for Incident of Essential Hypertension Based on Environmental and Genetic Factors with Support Vector Machine. Springer Science+Business Media, 10(1), 126–130. https://doi.org/10.1007/s12539-017-0271-2
    195. Pei, Z., Liu, J., Liu, M., Zhou, W., Yan, P., Wen, S., & Chen, Y. (2018b). Risk-Predicting Model for Incident of Essential Hypertension Based on Environmental and Genetic Factors with Support Vector Machine. Interdisciplinary Sciences, Computational Life Sciences, 10(1), 126–130. https://doi.org/10.1007/s12539-017-0271-2
    196. Pérez, M., Mahaffey, K. W., Hedlin, H., Rumsfeld, J. S., Garcia, A., Ferris, T., Balasubramanian, V., Russo, A. M., Rajmane, A., Cheung, L., Hung, G., Lee, J., Kowey, P. R., Talati, N., Nag, D., Gummidipundi, S., Beatty, A. L., Hills, M. T., Desai, S., … Turakhia, M. P. (2019). Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. Massachusetts Medical Society, 381(20), 1909–1917. https://doi.org/10.1056/nejmoa1901183
    197. Perez, M. V., Mahaffey, K. W., Hedlin, H., Rumsfeld, J. S., Garcia, A., Ferris, T., Balasubramanian, V., Russo, A. M., Rajmane, A., Cheung, L., Hung, G., Lee, J., Kowey, P., Talati, N., Nag, D., Gummidipundi, S. E., Beatty, A., Hills, M. T., Desai, S., … Apple Heart Study Investigators. (2019). Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. The New England Journal of Medicine, 381(20), 1909–1917. https://doi.org/10.1056/NEJMoa1901183
    198. Peters, T. M., & Visser, R. W. (2023, January). The Importance of Distrust in AI. In Springer Science+Business Media (pp. 301–317). https://doi.org/10.1007/978-3-031-44070-0_15
    199. Playford, D., Bordin, E., Talbot, L., Mohamad, R., Anderson, B., & Strange, G. (2018). Analysis of Aortic Stenosis Using Artificial Intelligence. Heart, Lung and Circulation, 27, S216. https://doi.org/10.1016/j.hlc.2018.06.390
    200. Polasek, T. M., Rayner, C. R., Peck, R., Rowland, A., Kimko, H., & Rostami‐Hodjegan, A. (2018). Toward Dynamic Prescribing Information: Codevelopment of Companion Model‐Informed Precision Dosing Tools in Drug Development. Wiley, 8(4), 418–425. https://doi.org/10.1002/cpdd.638
    201. Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., Peng, L., & Webster, D. R. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2(3), 158–164. https://doi.org/10.1038/s41551-018-0195-0
    202. Przewlocka-Kosmala, M., Marwick, T. H., Dabrowski, A., & Kosmala, W. (2019). Contribution of Cardiovascular Reserve to Prognostic Categories of Heart Failure With Preserved Ejection Fraction: A Classification Based on Machine Learning. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography, 32(5), 604-615.e6. https://doi.org/10.1016/j.echo.2018.12.002
    203. Qi, H., Zhang, H., Zhao, Y., Chen, C., Long, J. J., Chung, W. K., Guan, Y., & Shen, Y. (2021). MVP predicts the pathogenicity of missense variants by deep learning. Nature Portfolio, 12(1). https://doi.org/10.1038/s41467-020-20847-0
    204. Qi, S., Kumar, N., Xu, J., Patel, J., Damaraju, S., Shen‐Tu, G., & Greiner, R. (2022). Personalized breast cancer onset prediction from lifestyle and health history information. Public Library of Science, 17(12), e0279174–e0279174. https://doi.org/10.1371/journal.pone.0279174
    205. Rafiq, R. B., Modave, F., Lee, M. K., & Albert, M. V. (2020). Validation Methods to Promote Real-world Applicability of Machine Learning in Medicine. https://doi.org/10.1145/3441369.3441372
    206. Rao, A., Chu, S., Batlivala, N., Zetumer, S., & Roy, S. (2018). Improved Detection of Lung Fluid With Standardized Acoustic Stimulation of the Chest. Institute of Electrical and Electronics Engineers, 6, 1–7. https://doi.org/10.1109/jtehm.2018.2863366
    207. Rashidi, H. H., & Chen, M. (2023). Preface: Artificial intelligence (AI), machine learning ML) and digital pathology integration are the next major chapter in our diagnostic pathology and laboratory medicine arena. Seminars in Diagnostic Pathology, 40(2), 69–70. https://doi.org/10.1053/j.semdp.2023.02.005
    208. Ribli, D., Horváth, A., Unger, Z., Pollner, P., & Csabai, I. (2018). Detecting and classifying lesions in mammograms with Deep Learning. Scientific Reports, 8(1), 4165. https://doi.org/10.1038/s41598-018-22437-z
    209. Robinson, J. T., Pohlmeyer, E. A., Gather, M. C., Kemere, C., Kitching, J., Malliaras, G. G., Marblestone, A., Shepard, K. L., Stieglitz, T., & Xie, C. (2019). Developing Next-Generation Brain Sensing Technologies—A Review. IEEE Sensors Council, 19(22), 10163–10175. https://doi.org/10.1109/jsen.2019.2931159
    210. Rodoplu, D. (2024, June). Advances in AI-assisted biochip technology for biomedicine. In Elsevier BV (Vol. 177, pp. 116997–116997). https://doi.org/10.1016/j.biopha.2024.116997
    211. Rodriguez-Ruiz, A., Lång, K., Gubern-Merida, A., Broeders, M., Gennaro, G., Clauser, P., Helbich, T. H., Chevalier, M., Tan, T., Mertelmeier, T., Wallis, M. G., Andersson, I., Zackrisson, S., Mann, R. M., & Sechopoulos, I. (2019). Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. JNCI: Journal of the National Cancer Institute, 111(9), 916–922. https://doi.org/10.1093/jnci/djy222
    212. Roffman, D. A., Hart, G. R., Leapman, M. S., Yu, J. B., Guo, F. L., Ali, I., & Deng, J. (2018). Development and Validation of a Multiparameterized Artificial Neural Network for Prostate Cancer Risk Prediction and Stratification. JCO Clinical Cancer Informatics, 2, 1–10. https://doi.org/10.1200/CCI.17.00119
    213. Romeo, V., Maurea, S., Cuocolo, R., Petretta, M., Mainenti, P. P., Verde, F., Coppola, M., Dell’Aversana, S., & Brunetti, A. (2018). Characterization of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine-Learning Approach. Journal of Magnetic Resonance Imaging, 48(1), 198–204. https://doi.org/10.1002/jmri.25954
    214. Sabanayagam, C., Xu, D., Ting, D. S. W., Nusinovici, S., Banu, R., Hamzah, H., Lim, C., Tham, Y.-C., Cheung, C. Y., Tai, E. S., Wang, Y. X., Jonas, J. B., Cheng, C.-Y., Lee, M. L., Hsu, W., & Wong, T. Y. (2020). A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. The Lancet. Digital Health, 2(6), e295–e302. https://doi.org/10.1016/S2589-7500(20)30063-7
    215. Sadaghiani, M. S., Rowe, S. P., & Sheikhbahaei, S. (2021). Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: A systematic review. Annals of Translational Medicine, 9(9), Article 9. https://doi.org/10.21037/atm-20-6162
    216. Sailaja, M., Ahad, A., Sivaramakrishna, K., & Hussain, A. B. R. M. (2021). Machine Learning Medical Resource Allocation. IOP Publishing, 2089(1), 012082–012082. https://doi.org/10.1088/1742-6596/2089/1/012082

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Pande, A., Kumar, A., & Anjankar, A. (2025). Harnessing artificial intelligence for theragnostic applications: Current landscape and future directions. Multidisciplinary Reviews, 8(7), 2025218. https://doi.org/10.31893/multirev.2025218
  • Article viewed - 317
  • PDF downloaded - 212