• Abstract

    Emergency medicine is undergoing a significant transformation due to the integration of artificial intelligence (AI), which is enhancing patient care, boosting operational efficiency, and revolutionizing clinical decision-making. This analysis examines the present applications and prospects of AI in emergency medicine, with a focus on its capacity to enhance diagnostic precision, improve triage systems, and tailor treatment strategies. Emergency departments worldwide are increasingly adopting AI-driven tools, including advanced triage systems, predictive analytics, and automated diagnostic support. These technologies have shown impressive abilities in medical image analysis, patient outcome prediction, and clinical documentation assistance. Nevertheless, the implementation of AI in emergency medicine faces obstacles such as data accessibility and quality, ethical issues, and the need for comprehensive regulatory frameworks. To ensure responsible AI system development and deployment, collaboration among healthcare professionals, data scientists, ethicists, and policymakers is essential. Future AI advancements in emergency medicine are expected to include improved predictive analytics, precise diagnostics, and individualized patient care. AI-enabled remote monitoring and telehealth services also show potential for alleviating pressure on emergency services and improving patient outcomes. As AI technology progresses, it is vital to address the constraints and challenges associated with its implementation, including data sharing, model interpretability, and potential biases. Ongoing research and stakeholder discussions are crucial to fully leverage AI's potential in emergency medicine while prioritizing patient safety, privacy, and equitable access to healthcare services.

  • References

    1. Ahmed, M. I., Spooner, B., Isherwood, J., Lane, M., Orrock, E., & Dennison, A. R. (2023). A systematic review of the barriers to the implementation of artificial intelligence in healthcare. Cureus, 15 (10), e46454. https://doi.org/10.7759/cureus.46454
    2. Alamgir, A., Mousa, O., & Shah, Z. (2021). Artificial intelligence in predicting cardiac arrest: Scoping review. JMIR Publications, 9 (12), e30798. https://doi.org/10.2196/30798
    3. Alami, H., Rivard, L., Lehoux, P., Hoffman, S. J., Cadeddu, S. B., Savoldelli, M., Samri, M., Ahmed, M. A. A., Fleet, R., & Fortin, J. (2020). Artificial intelligence in health care: Laying the foundation for responsible, sustainable, and inclusive innovation in low- and middle-income countries. Globalization and Health, 16 (1), 1–12. https://doi.org/10.1186/s12992-020-00584-1
    4. Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Yami, M. S. A., Harbi, S. A., & Albekairy, A. (2023). Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Medical Education, 23 (1), 1–15. https://doi.org/10.1186/s12909-023-04698-z
    5. Bajwa, J., Munir, U., Nori, A. V., & Williams, B. (2021). Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthcare Journal, 8 (2), e188–e194. https://doi.org/10.7861/fhj.2021-0095
    6. Blueprint for an AI Bill of Rights: Making automated systems work for the American people. (2022). The White House . https://www.jdsupra.com/legalnews/the-white-house-releases-blueprint-for-9371314.Accessed on January 19, 2025.
    7. Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. In F. Allhoff, A. Lin, & J. Moor (Eds.), The Cambridge Handbook of Artificial Intelligence (pp. 316–334). Cambridge University Press . https://doi.org/10.1017/cbo9781139046855.020
    8. Challen, R., Denny, J. C., Pitt, M., Gompels, L., Edwards, T. L., & Tsaneva-Atanasova, K. (2019). Artificial intelligence, bias and clinical safety. BMJ Quality & Safety, 28 (3), 231–237. https://doi.org/10.1136/bmjqs-2018-008370
    9. Chang, H., & Chul, W. (2022). Artificial intelligence decision points in an emergency department. Clinical and Experimental Emergency Medicine, 9 (3), 165–168. https://doi.org/10.15441/ceem.22.366
    10. Chen, L., Zheng, H., Chen, L., Wu, S., & Wang, S. (2021). National early warning score in predicting severe adverse outcomes of emergency medicine patients: A retrospective cohort study. Journal of Multidisciplinary Healthcare, 14 , 2067–2078. https://doi.org/10.2147/jmdh.s324068
    11. Corrêa, N. K., Galvão, C., Santos, J. W., Pino, C. D., Pinto, E. P., Barbosa, C. K. R., Massmann, D., Mambrini, R., Galvão, L., Ugar, E. T., & Oliveira, N. D. (2023). Worldwide AI ethics: A review of 200 guidelines and recommendations for AI governance. Patterns, 4 (10), 100857. https://doi.org/10.1016/j.patter.2023.100857
    12. D’Elia, A., Gabbay, M., Rodgers, S., Kierans, C., Jones, E., Durrani, I., Thomas, A., & Frith, L. (2022). Artificial intelligence and health inequities in primary care: A systematic scoping review and framework. BMJ Family Medicine and Community Health, 10 (1), e001670. https://doi.org/10.1136/fmch-2022-001670
    13. Dankwa-Mullan, I., Scheufele, E., Matheny, M. E., Quintana, Y., Chapman, W. W., Jackson, G. P., & South, B. R. (2021). A proposed framework on integrating health equity and racial justice into the artificial intelligence development lifecycle. Journal of Health Care for the Poor and Underserved, 32 (2S), 300–317. https://doi.org/10.1353/hpu.2021.0065
    14. Dileep, G., & Gyani, S. G. G. (2022). Artificial intelligence in breast cancer screening and diagnosis. Cureus, 14 (10), e30318. https://doi.org/10.7759/cureus.30318
    15. Eastwood, K. W., May, R., Andreou, P., Abidi, S., Abidi, S. S. R., & Loubani, O. (2023). Needs and expectations for artificial intelligence in emergency medicine according to Canadian physicians. BMC Health Services Research, 23 (1), 174. https://doi.org/10.1186/s12913-023-09740-w
    16. Erdélyi, O. J., & Goldsmith, J. (2022). Regulating artificial intelligence: Proposal for a global solution. Government Information Quarterly, 39 (4), 101748. https://doi.org/10.1016/j.giq.2022.101748
    17. Ferrara, E. (2023). Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Science, 6 (1), 3. https://doi.org/10.3390/sci6010003
    18. Fujimori, R., Liu, K., Soeno, S., Naraba, H., Ogura, K., Hara, K., Sonoo, T., Ogura, T., Nakamura, K., & Goto, T. (2022). Acceptance, barriers, and facilitators to implementing artificial intelligence–based decision support systems in emergency departments. JMIR Human Factors, 6 (6), e36501. https://doi.org/10.2196/36501
    19. Gallagher, C., Hutchinson, P. J., & Pickard, J. D. (2007). Neuroimaging in trauma. Current Opinion in Neurology, 20 (4), 403–409. https://doi.org/10.1097/wco.0b013e32821b987b
    20. Ganjizadeh, A., Zawada, S., Langer, S. G., & Erickson, B. J. (2024). Visualizing clinical data retrieval and curation in multimodal healthcare AI research: A technical note on RIL-workflow. Journal of Digital Imaging, 37 (3), 1239–1247. https://doi.org/10.1007/s10278-024-00977-3
    21. Gao, S., & Lima, D. (2021). A review of the application of deep learning in the detection of Alzheimer's disease. International Journal of Cognitive Computing in Engineering, 3 , 1–8. https://doi.org/10.1016/j.ijcce.2021.12.002
    22. Geis, J. R., Brady, A. P., Wu, C. C., Spencer, J., Ranschaert, E., Jaremko, J. L., Langer, S. G., Kitts, A. B., Birch, J., Shields, W., van der Hout, R., Kotter, E., Gichoya, J. W., Cook, T. S., Morgan, M. B., Tang, A., Safdar, N., & Kohli, M. D. (2019). Ethics of artificial intelligence in radiology: Summary of the joint European and North American multisociety statement. Radiology, 293 (2), 436–440. https://doi.org/10.1148/radiol.2019191586
    23. Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. In T. Cohen (Ed.), AI and Health Law (pp. 295–336). Elsevier . https://doi.org/10.1016/b978-0-12-818438-7.00012-5
    24. Goldberg, C. B., Adams, L., Blumenthal, D., Brennan, P. F., Brown, N., Butte, A. J., DeBronkart, D., Dixon, J., Drazen, J. M., Evans, B. J., Hoffman, S. M., Holmes, C., Lee, P., Manrai, A. K., Omenn, G. S., Perlin, J. B., Ramoni, R., Sapiro, G., ... Zhao, J. (2024). To do no harm—and the most good—with AI in health care. Nature Medicine, 30 (3), 623–627. https://doi.org/10.1038/s41591-024-02853-7
    25. Goldsack, J. C., & Zanetti, C. A. (2020). Defining and developing the workforce needed for success in the digital era of medicine. Digital Biomarkers, 4 (1), 136–142. https://doi.org/10.1159/000512382
    26. Goswami, S., Chakraborty, S., Ghosh, S., Chakrabarti, A., & Chakraborty, B. (2016). A review on application of data mining techniques to combat natural disasters. Ain Shams Engineering Journal, 9 (3), 365–378. https://doi.org/10.1016/j.asej.2016.01.012
    27. Grant, K., McParland, A., Mehta, S., & Ackery, A. (2020). Artificial intelligence in emergency medicine: Surmountable barriers with revolutionary potential. Annals of Emergency Medicine, 75 (6), 721–726. https://doi.org/10.1016/j.annemergmed.2019.12.024
    28. Gyftopoulos, S., Lin, D. J., Knöll, F., Doshi, A. M., Rodrigues, T. C., & Recht, M. P. (2019). Artificial intelligence in musculoskeletal imaging: Current status and future directions. American Journal of Roentgenology, 213 (3), 506–513. https://doi.org/10.2214/ajr.19.21117
    29. Habuza, T., Navaz, A. N., Hashim, F., Alnajjar, F., Zaki, N., Serhani, M. A., & Statsenko, Y. (2021). AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine. Intelligent Medicine, 24 , 100596. https://doi.org/10.1016/j.imu.2021.100596
    30. Haq, I. U., Chhatwal, K., Sanaka, K., & Xu, B. (2022). Artificial intelligence in cardiovascular medicine: Current insights and future prospects. Vascular Health and Risk Management, 18 , 517–528. https://doi.org/10.2147/vhrm.s279337
    31. Harnessing AI for cancer diagnosis. (2022). Med-Tech News . https://www.med-technews.com/medtech-insights/ai-in-healthcare-insights/harnessing-ai-for-cancer-diagnosis/Accessed on January 19, 2025.
    32. Harry, A. (2023). The future of medicine: Harnessing the power of AI for revolutionizing healthcare. International Journal of Medical Data Science and Analytics, 2 (1), 36–47. https://doi.org/10.47709/ijmdsa.v2i1.2395
    33. Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in surgery: Promises and perils. Annals of Surgery, 268 (1), 70–76. https://doi.org/10.1097/sla.0000000000002693
    34. Hazarika, I. (2020). Artificial intelligence: Opportunities and implications for the health workforce. International Health, 12 (4), 241–245. https://doi.org/10.1093/inthealth/ihaa007
    35. Hernandez-Boussard, T., Bozkurt, S., Ioannidis, J. P. A., & Shah, N. H. (2020). MINIMAR (minimum information for medical AI reporting): Developing reporting standards for artificial intelligence in health care. Journal of the American Medical Informatics Association, 27 (12), 2011–2015. https://doi.org/10.1093/jamia/ocaa088
    36. Hlávka, J. (2020). Security, privacy, and information-sharing aspects of healthcare artificial intelligence. In T. Cohen (Ed.), AI and Health Law (pp. 235–270). Elsevier . https://doi.org/10.1016/b978-0-12-818438-7.00010-1
    37. Huang, C., Zhang, Z., Mao, B., & Yao, X. (2022). An overview of artificial intelligence ethics. IEEE Transactions on Artificial Intelligence, 4 (4), 799–819. https://doi.org/10.1109/tai.2022.3194503
    38. Janke, A. T., Overbeek, D. L., Kocher, K. E., & Levy, P. D. (2015). Exploring the potential of predictive analytics and big data in emergency care. Annals of Emergency Medicine, 67 (2), 227–236. https://doi.org/10.1016/j.annemergmed.2015.06.024
    39. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2 (4), 230–243. https://doi.org/10.1136/svn-2017-000101
    40. Kane, H., Halpern, M. T., Squiers, L., Treiman, K., & McCormack, L. (2014). Implementing and evaluating shared decision making in oncology practice. CA: A Cancer Journal for Clinicians, 64 (6), 377–388. https://doi.org/10.3322/caac.21245
    41. Kansal, R., Bawa, A., Bansal, A., Trehan, S., Goyal, K., Goyal, N. K., & Malhotra, K. (2022). Differences in knowledge and perspectives on the usage of artificial intelligence among doctors and medical students of a developing country: A cross-sectional study. Cureus, 14 (1), e21434. https://doi.org/10.7759/cureus.21434
    42. Kim, H., Kim, H. H., Han, B., Kim, K., Han, K., Nam, H., Lee, E. H., & Kim, E. (2020). Changes in cancer detection and false-positive recall in mammography using artificial intelligence: A retrospective, multireader study. The Lancet Digital Health, 2 (3), e138–e148. https://doi.org/10.1016/s2589-7500(20)30003-0
    43. Kirubarajan, A., Taher, A., Khan, S., & Masood, S. (2020). Artificial intelligence in emergency medicine: A scoping review. Academic Emergency Medicine, 27 (6), 1691–1702. https://doi.org/10.1002/emp2.12277
    44. Kuziemsky, C., Maeder, A., John, O., Gogia, S. B., Basu, A., Meher, S. K., & Ito, M. (2019). Role of artificial intelligence within the telehealth domain. Methods of Information in Medicine, 28 (1), 35–40. https://doi.org/10.1055/s-0039-1677897
    45. Létourneau-Guillon, L., Camirand, D., Guilbert, F., & Forghani, R. (2020). Artificial intelligence applications for workflow, process optimization, and predictive analytics. Neuroimaging Clinics of North America, 30 (4), e1–e15. https://doi.org/10.1016/j.nic.2020.08.008
    46. Liao, X., Yao, C., Jin, F., Zhang, Q., & Liu, L. (2024). Barriers and facilitators to implementing imaging-based diagnostic artificial intelligence-assisted decision-making software in hospitals in China: A qualitative study using the updated consolidated framework for implementation research. BMJ Open, 14 (9), e084398. https://doi.org/10.1136/bmjopen-2024-084398
    47. Louca, S. (2012). Personalized medicine – A tailored health care system: Challenges and opportunities. Croatian Medical Journal, 53 (3), 211–213. https://doi.org/10.3325/cmj.2012.53.211
    48. Margetts, H. (2022). Rethinking AI for good governance. Daedalus, 151 (2), 360–371. https://doi.org/10.1162/daed_a_01922
    49. Mehta, S. S., & Lingayat, N. S. (2008). Detection of QRS complexes in electrocardiogram using support vector machine. Journal of Medical Engineering & Technology, 32 (3), 206–215. https://doi.org/10.1080/03091900701507183
    50. Miller, W., Peek, M. E., & Parker, W. F. (2020). Scarce resource allocation scores threaten to exacerbate racial disparities in health care. Chest, 158 (4), 1332–1334. https://doi.org/10.1016/j.chest.2020.05.526
    51. Mithany, R. H., Aslam, S., Abdallah, S., Abdelmaseeh, M., Gerges, F., Mohamed, M. S., Manasseh, M., Wanees, A., Shahid, M. H., Khalil, M., & Daniel, N. (2023). Advancements and challenges in the application of artificial intelligence in the surgical arena: A literature review. Cureus, 15 (10), e47924. https://doi.org/10.7759/cureus.47924
    52. Modi, P., Rodriguez, E., & Chitwood, W. R. (2009). Robot-assisted cardiac surgery. Interactive Cardiovascular and Thoracic Surgery, 9 (3), 500–505. https://doi.org/10.1510/icvts.2009.203182
    53. Penza, V., Moccia, S., Momi, E. D., & Mattos, L. S. (2019). Enhanced vision to improve safety in robotic surgery. In A. E. Johnson & J. Smith (Eds.), Advances in Robotic Surgery (pp. 223–237). Elsevier . https://doi.org/10.1016/b978-0-12-814245-5.00014-1
    54. Pereira, A. M., Jácome, C., Amaral, R., Jacinto, T., & Fonseca, J. (2018). Real-time clinical decision support at the point of care. In K. Patel (Ed.), Clinical Applications of Decision Support Systems (pp. 125–133). Elsevier . https://doi.org/10.1016/b978-0-12-813471-9.00022-0
    55. Pesapane, F., Codari, M., & Sardanelli, F. (2018). Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Insights into Imaging, 9 (1), 47–52. https://doi.org/10.1186/s41747-018-0061-6
    56. Petrella, R. J. (2024). The AI future of emergency medicine. Annals of Emergency Medicine, 84 (2), 139–153. https://doi.org/10.1016/j.annemergmed.2024.01.031
    57. Picard, C., Smith, K. E., Picard, K., & Douma, M. J. (2020). Can Alexa, Cortana, Google Assistant, and Siri save your life? A mixed-methods analysis of virtual digital assistants and their responses to first aid and basic life support queries. BMJ Innovations, 6 (1), 26–31. https://doi.org/10.1136/bmjinnov-2018-000326
    58. Poalelungi, D. G., Mușat, C. L., Fulga, A., Neagu, M., Neagu, A., Piraianu, A. I., & Fulga, I. (2023). Advancing patient care: How artificial intelligence is transforming healthcare. Journal of Personalized Medicine, 13 (8), 1214. https://doi.org/10.3390/jpm13081214
    59. Price, W. N., & Cohen, I. G. (2018). Privacy in the age of medical big data. Nature Medicine, 25 (1), 37–43. https://doi.org/10.1038/s41591-018-0272-7
    60. Propp, D. A. (2012). Successful introduction of an emergency department electronic health record. Western Journal of Emergency Medicine, 13 (4), 358–361. https://doi.org/10.5811/westjem.2012.1.11564
    61. Racine, É., Boehlen, W., & Sample, M. (2019). Healthcare uses of artificial intelligence: Challenges and opportunities for growth. Canadian Journal of Neurological Sciences, 32 (5), 272–275. https://doi.org/10.1177/0840470419843831
    62. Santana, M., Manalili, K., Jolley, R. J., Zelinsky, S., Quan, H., & Lu, M. (2017). How to practice person‐centred care: A conceptual framework. Health Expectations, 21 (2), 429–440. https://doi.org/10.1111/hex.12640
    63. Santos, M., Tygesen, H., Eriksson, H., & Herlitz, J. (2014). Clinical decision support system (CDSS) – effects on care quality. International Journal of Health Care Quality Assurance, 27 (8), 707–718. https://doi.org/10.1108/ijhcqa-01-2014-0010
    64. Scott, G., Clawson, J., Gardett, I., Broadbent, M., Bergqvist, D., Fivaz, C., Marshall, G., Barron, T., & Olola, C. (2017). 9-1-1 triage of non-traumatic chest pain: Association with hospital diagnosis. Prehospital Emergency Care, 21 (4), 525–534. https://doi.org/10.1080/10903127.2017.1302530
    65. Seibert, K., Domhoff, D., Bruch, D., Schulte‐Althoff, M., Fürstenau, D., Bießmann, F., & Wolf‐Ostermann, K. (2021). Application scenarios for artificial intelligence in nursing care: Rapid review. Journal of Medical Internet Research, 23 (11), e26522. https://doi.org/10.2196/26522
    66. Shafaf, N., & Malek, H. (2019). Applications of machine learning approaches in emergency medicine: A review article. National Institutes of Health, 7 (1), 34.
    67. Shamszare, H., & Choudhury, A. (2023). Clinicians’ perceptions of artificial intelligence: Focus on workload, risk, trust, clinical decision making, and clinical integration. Healthcare, 11 (16), 2308. https://doi.org/10.3390/healthcare11162308
    68. Sharma, T., Bamford, M., & Dodman, D. (2015). Person-centred care: An overview of reviews. Australian Journal of Advanced Nursing, 51 (2–3), 107–120. https://doi.org/10.1080/10376178.2016.1150192
    69. Sherry, M., Wolff, J. L., Ballreich, J., DuGoff, E. H., Davis, K., & Anderson, G. F. (2016). Bridging the silos of service delivery for high-need, high-cost individuals. Population Health Management, 19 (6), 421–428. https://doi.org/10.1089/pop.2015.0147
    70. Skinner, J. S., Smeeth, L., Kendall, J. M., Adams, P. C., & Timmis, A. (2010). NICE guidance. Chest pain of recent onset: Assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Heart, 96 (12), 974–978. https://doi.org/10.1136/hrt.2009.190066
    71. Smith, M., Sattler, A., Hong, G., & Lin, S. (2021). From code to bedside: Implementing artificial intelligence using quality improvement methods. Journal of General Internal Medicine, 36 (4), 1061–1066. https://doi.org/10.1007/s11606-020-06394-w
    72. Tangsrivimol, J. A., Schonfeld, E., Zhang, M., Veeravagu, A., Smith, T. R., Chang, L. W., Lawton, M. T., Sherbini, A. E., Prevedello, D. M., Glicksberg, B. S., & Krittanawong, C. (2023). Artificial intelligence in neurosurgery: A state-of-the-art review from past to future. Diagnostics, 13 (14), 2429. https://doi.org/10.3390/diagnostics13142429
    73. Taylor, R. A., Pare, J. R., Venkatesh, A. K., Mowafi, H., Melnick, E. R., Fleischman, W., & Hall, M. K. (2015). Prediction of in‐hospital mortality in emergency department patients with sepsis: A local big data–driven, machine learning approach. Academic Emergency Medicine, 23 (3), 269–278. https://doi.org/10.1111/acem.12876
    74. Tran, W. T., Jerzak, K. J., Lu, F., Klein, J., Tabbarah, S., Lagree, A., Wu, T., Rosado-Méndez, I. M., Law, E., Saednia, K., & Sadeghi-Naini, A. (2019). Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics. Journal of Molecular Imaging and Radionuclide Therapy, 50 (4), S32–S41. https://doi.org/10.1016/j.jmir.2019.07.010
    75. Vaio, A. D., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121 , 283–314. https://doi.org/10.1016/j.jbusres.2020.08.019
    76. Varnosfaderani, S. M., & Forouzanfar, M. (2024). The role of AI in hospitals and clinics: Transforming healthcare in the 21st century. Bioengineering, 11 (4), 337. https://doi.org/10.3390/bioengineering11040337
    77. Woodford, M., Mackenzie, C. F., DuBose, J. J., Hu, P., Kufera, J. A., Hu, E. Z., Dutton, R. P., & Scalea, T. M. (2012). Continuously recorded oxygen saturation and heart rate during prehospital transport outperform initial measurement in prediction of mortality after trauma. Journal of Trauma and Acute Care Surgery, 72 (4), 1006–1012. https://doi.org/10.1097/ta.0b013e318241c059
    78. Wright, M., & Robicsek, A. (2015). Clinical decision support systems and infection prevention: To know is not enough. American Journal of Infection Control, 43 (6), 554–558. https://doi.org/10.1016/j.ajic.2015.02.004
    79. Zhou, B., Yang, G., Shi, Z., & Ma, S. (2022). Natural language processing for smart healthcare. IEEE Reviews in Biomedical Engineering, 17 , 4–18. https://doi.org/10.1109/rbme.2022.3210270

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

kuttan, N., Pundkar, A., Gadkari, C., Patel, A., & Kumar, A. (2025). Transforming emergency medicine with artificial intelligence: From triage to clinical decision support . Multidisciplinary Reviews, 8(10), 2025285. https://doi.org/10.31893/multirev.2025285
  • Article viewed - 308
  • PDF downloaded - 58