• Abstract

    The utilization of sustainable biomaterials in pharmaceutical and medical applications has gained significant momentum in recent years due to their dual ability to address environmental concerns and meet the evolving demands of modern healthcare. As the need for greener alternatives in healthcare intensifies, this review presents a comprehensive overview of recent advancements and innovations in sustainable biomaterials for pharmaceutical and medical fields. The review begins by exploring sustainable sourcing methods and eco-friendly production techniques, which are crucial in reducing the environmental footprint of biomaterial development. Emphasis is placed on adopting renewable resources and processes that minimize waste and energy consumption, ensuring sustainability throughout the lifecycle of these materials. A diverse array of sustainable biomaterials is highlighted, including biopolymers, natural extracts, and biobased nanoparticles, with a focus on their unique properties and biomedical applications. These materials are increasingly utilized in critical areas such as drug delivery systems, tissue engineering, wound healing, and medical device fabrication. Their attributes, including biocompatibility, biodegradability, and therapeutic efficacy, make them valuable assets in advancing healthcare solutions while preserving environmental integrity. Additionally, this review delves into regulatory considerations and the commercialization prospects of sustainable biomaterials, discussing the challenges and opportunities in integrating these materials into mainstream medical and pharmaceutical practices. Issues such as cost-effectiveness, scalability, and adherence to stringent regulatory standards are critically examined to understand their implications for real-world applications. By elucidating the potential, challenges, and future directions of sustainable biomaterials, this article aims to inspire further research and innovation in developing environmentally friendly and effective healthcare solutions. It advocates for a transformative approach to material science that prioritizes sustainability without compromising therapeutic outcomes, paving the way for a greener and healthier future.

  • References

    1. Abbasian, M., Massoumi, B., Mohammad-Rezaei, R., Samadian, H., & Jaymand, M. (2019). Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? International Journal of Biological Macromolecules, 134, 673–694. https://doi.org/10.1016/j.ijbiomac.2019.04.197
    2. Abraham, A. K., & G, S. V. (2015). Materials, design and manufacturing technologies for orthopedic biomaterials: A review. Trends in Biomaterials and Artificial Organs, 29(3), 258–261.
    3. Agnieray, H., Glasson, J. L., Chen, Q., Kaur, M., & Domigan, L. J. (2021). Recent developments in sustainably sourced protein-based biomaterials. Biochemical Society Transactions, 49(2), 953–964. https://doi.org/10.1042/BST20200896
    4. Al Rashid, A., Khan, S. A., G. Al-Ghamdi, S., & Koç, M. (2021). Additive manufacturing of polymer nanocomposites: Needs and challenges in materials, processes, and applications. Journal of Materials Research and Technology, 14, 910–941. https://doi.org/10.1016/j.jmrt.2021.07.016
    5. Alizadeh-Osgouei, M., Li, Y., & Wen, C. (2019). A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive Materials, 4, 22–36. https://doi.org/10.1016/j.bioactmat.2018.11.003
    6. Álvarez-Castillo, E., Aguilar, J. M., Bengoechea, C., López-Castejón, M. L., & Guerrero, A. (2021). Rheology and Water Absorption Properties of Alginate–Soy Protein Composites. Polymers, 13(11), Article 11. https://doi.org/10.3390/polym13111807
    7. Arif, Z. U., Khalid, M. Y., Noroozi, R., Hossain, M., Shi, H. H., Tariq, A., Ramakrishna, S., & Umer, R. (2023). Additive manufacturing of sustainable biomaterials for biomedical applications. Asian Journal of Pharmaceutical Sciences, 18(3), 100812. https://doi.org/10.1016/j.ajps.2023.100812
    8. Bello, A. B., Kim, D., Kim, D., Park, H., & Lee, S.-H. (2020). Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Engineering Part B: Reviews, 26(2), 164–180. https://doi.org/10.1089/ten.teb.2019.0256
    9. Bhat, S., & Kumar, A. (2013). Biomaterials and bioengineering tomorrow’s healthcare. Biomatter, 3(3), e24717. https://doi.org/10.4161/biom.24717
    10. Bioengineering | Free Full-Text | Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. (n.d.). Retrieved March 16, 2024, from https://www.mdpi.com/2306-5354/8/2/29
    11. Biswal, T., BadJena, S. K., & Pradhan, D. (2020). Sustainable biomaterials and their applications: A short review. Materials Today: Proceedings, 30, 274–282. https://doi.org/10.1016/j.matpr.2020.01.437
    12. Biswas, M. C., Jony, B., Nandy, P. K., Chowdhury, R. A., Halder, S., Kumar, D., Ramakrishna, S., Hassan, M., Ahsan, M. A., Hoque, M. E., & Imam, M. A. (2022). Recent Advancement of Biopolymers and Their Potential Biomedical Applications. Journal of Polymers and the Environment, 30(1), 51–74. https://doi.org/10.1007/s10924-021-02199-y
    13. Bodin, A., Concaro, S., Brittberg, M., & Gatenholm, P. (2007). Bacterial cellulose as a potential meniscus implant. Journal of Tissue Engineering and Regenerative Medicine, 1(5), 406–408. https://doi.org/10.1002/term.51
    14. Caldas, M., Santos, A. C., Veiga, F., Rebelo, R., Reis, R. L., & Correlo, V. M. (2020). Melanin nanoparticles as a promising tool for biomedical applications – a review. Acta Biomaterialia, 105, 26–43. https://doi.org/10.1016/j.actbio.2020.01.044
    15. Campoccia, D., Montanaro, L., & Arciola, C. R. (2013). A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34), 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
    16. Chaikof, E. L., Matthew, H., Kohn, J., Mikos, A. G., Prestwich, G. D., & Yip, C. M. (2002). Biomaterials and Scaffolds in Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 96–105. https://doi.org/10.1111/j.1749-6632.2002.tb03057.x
    17. Chaudhuri, A., Ramesh, K., Kumar, D. N., Dehari, D., Singh, S., Kumar, D., & Agrawal, A. K. (2022). Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. Journal of Drug Delivery Science and Technology, 77, 103886. https://doi.org/10.1016/j.jddst.2022.103886
    18. Chen, L., Li, X., Li, L., & Guo, S. (2007a). Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Current Applied Physics, 7, e90–e93. https://doi.org/10.1016/j.cap.2006.11.023
    19. Chen, L., Li, X., Li, L., & Guo, S. (2007b). Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Current Applied Physics, 7, e90–e93. https://doi.org/10.1016/j.cap.2006.11.023
    20. Ciapetti, G., Granchi, D., Savarino, L., Cenni, E., Magrini, E., Baldini, N., & Giunti, A. (2002). In vitro testing of the potential for orthopedic bone cements to cause apoptosis of osteoblast-like cells. Biomaterials, 23(2), 617–627. https://doi.org/10.1016/S0142-9612(01)00149-1
    21. Coatings | Free Full-Text | Extrusion-Based 3D Printing Applications of PLA Composites: A Review. (n.d.). Retrieved March 16, 2024, from https://www.mdpi.com/2079-6412/11/4/390
    22. Crystals | Free Full-Text | Advances in the Applications of Graphene-Based Nanocomposites in Clean Energy Materials. (n.d.). Retrieved March 14, 2024, from https://www.mdpi.com/2073-4352/11/1/47
    23. Dadashzadeh, A., Imani, R., Moghassemi, S., Omidfar, K., & Abolfathi, N. (2020). Study of hybrid alginate/gelatin hydrogel-incorporated niosomal Aloe vera capable of sustained release of Aloe vera as potential skin wound dressing. Polymer Bulletin, 77(1), 387–403. https://doi.org/10.1007/s00289-019-02753-8
    24. Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semisynthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001
    25. Davison-Kotler, E., Marshall, W. S., & García-Gareta, E. (2019). Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering, 6(3), 56. https://doi.org/10.3390/bioengineering6030056
    26. Deng, M., Kumbar, S. G., Wan, Y., Toti, U. S., Allcock, H. R., & Laurencin, C. T. (2010). Polyphosphazene polymers for tissue engineering: An analysis of material synthesis, characterization and applications. Soft Matter, 6(14), 3119–3132. https://doi.org/10.1039/B926402G
    27. Dienel, K. E. G., Van Bochove, B., & Seppälä, J. V. (2020). Additive Manufacturing of Bioactive Poly(trimethylene carbonate)/β-Tricalcium Phosphate Composites for Bone Regeneration. Biomacromolecules, 21(2), 366–375. https://doi.org/10.1021/acs.biomac.9b01272
    28. Dong, M., Mao, Y., Zhao, Z., Zhang, J., Zhu, L., Chen, L., & Cao, L. (2021). Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations. International Wound Journal, 19(3), 679–691. https://doi.org/10.1111/iwj.13665
    29. Elmowafy, E., Abdal-Hay, A., Skouras, A., Tiboni, M., Casettari, L., & Guarino, V. (2019). Polyhydroxyalkanoate (PHA): Applications in drug delivery and tissue engineering. Expert Review of Medical Devices, 16(6), 467–482. https://doi.org/10.1080/17434440.2019.1615439
    30. Elzoghby, A. O. (2013). Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. Journal of Controlled Release, 172(3), 1075–1091. https://doi.org/10.1016/j.jconrel.2013.09.019
    31. Fadilah, N. I. M., Phang, S. J., Kamaruzaman, N., Salleh, A., Zawani, M., Sanyal, A., Maarof, M., & Fauzi, M. B. (2023). Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants, 12(4), 787. https://doi.org/10.3390/antiox12040787
    32. Freitas, A. A. R., Ribeiro, A. J., Santos, A. C., Veiga, F., Nunes, L. C. C., Silva, D. A., Soares-Sobrinho, J. L., & Silva-Filho, E. C. (2020). Sterculia striata gum as a potential oral delivery system for protein drugs. International Journal of Biological Macromolecules, 164, 1683–1692. https://doi.org/10.1016/j.ijbiomac.2020.07.276
    33. Fujita, M., Kinoshita, M., Ishihara, M., Kanatani, Y., Morimoto, Y., Simizu, M., Ishizuka, T., Saito, Y., Yura, H., Matsui, T., Takase, B., Hattori, H., Kikuchi, M., & Maehara, T. (2004). Inhibition of vascular prosthetic graft infection using a photocrosslinkable chitosan hydrogel. Journal of Surgical Research, 121(1), 135–140. https://doi.org/10.1016/j.jss.2004.04.010
    34. Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., & Cosco, D. (2021). Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology, 12, 601626. https://doi.org/10.3389/fphar.2021.601626
    35. Goh, B. T., Teh, L. Y., Tan, D. B. P., Zhang, Z., & Teoh, S. H. (2015). Novel 3 D polycaprolactone scaffold for ridge preservation – a pilot randomized controlled clinical trial. Clinical Oral Implants Research, 26(3), 271–277. https://doi.org/10.1111/clr.12486
    36. Grabska-Zielińska, S., & Sionkowska, A. (2021). How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?—Blending and Cross-Linking of Silk Fibroin—A Review. Materials, 14(6), 1510. https://doi.org/10.3390/ma14061510
    37. Gu, X., Carroll Turpin, M. A., & Romero-Ortega, M. I. (2022). Biomaterials and Regenerative Medicine in Pain Management. Current Pain and Headache Reports, 26(7), 533–541. https://doi.org/10.1007/s11916-022-01055-5
    38. Haimhoffer, Á., Rusznyák, Á., Réti-Nagy, K., Vasvári, G., Váradi, J., Vecsernyés, M., Bácskay, I., Fehér, P., Ujhelyi, Z., & Fenyvesi, F. (2019). Cyclodextrins in Drug Delivery Systems and Their Effects on Biological Barriers. Scientia Pharmaceutica, 87(4), Article 4. https://doi.org/10.3390/scipharm87040033
    39. Han, X., Alu, A., Liu, H., Shi, Y., Wei, X., Cai, L., & Wei, Y. (2022). Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Materials, 17, 29–48. https://doi.org/10.1016/j.bioactmat.2022.01.011
    40. Hassan, N., Verdinelli, V., Ruso, J. M., & Messina, P. V. (2012). Assessing structure and dynamics of fibrinogen films on silicon nanofibers: Toward hemocompatibility devices. Soft Matter, 8(24), 6582–6592. https://doi.org/10.1039/C2SM25489A
    41. Hou, W., Miyazaki, S., Takada, M., & Komai, T. (1985). Sustained release of indomethacin from chitosan granules. Chemical and Pharmaceutical Bulletin, 33(9), 3986–3992. https://doi.org/10.1248/cpb.33.3986
    42. How, K. N., Yap, W. H., Lim, C. L. H., Goh, B. H., & Lai, Z. W. (2020). Hyaluronic Acid-Mediated Drug Delivery System Targeting for Inflammatory Skin Diseases: A Mini Review. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.01105
    43. Huang, Z., Shao, G., & Li, L. (2023). Micro/nano functional devices fabricated by additive manufacturing. Progress in Materials Science, 131, 101020. https://doi.org/10.1016/j.pmatsci.2022.101020
    44. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7
    45. Husain, S., Al-Samadani, K. H., Najeeb, S., Zafar, M. S., Khurshid, Z., Zohaib, S., & Qasim, S. B. (2017). Chitosan Biomaterials for Current and Potential Dental Applications. Materials, 10(6), 602. https://doi.org/10.3390/ma10060602
    46. Hussain, Z., Katas, H., Mohd Amin, M. C. I., Kumolosasi, E., Buang, F., & Sahudin, S. (2013). Self-assembled polymeric nanoparticles for percutaneous codelivery of hydrocortisone/hydroxytyrosol: An ex vivo and in vivo study using an NC/Nga mouse model. International Journal of Pharmaceutics, 444(1), 109–119. https://doi.org/10.1016/j.ijpharm.2013.01.024
    47. Huzum, B., Puha, B., Necoara, R. M., Gheorghevici, S., Puha, G., Filip, A., Sirbu, P. D., & Alexa, O. (2021). Biocompatibility assessment of biomaterials used in orthopedic devices: An overview (Review). Experimental and Therapeutic Medicine, 22(5), 1315. https://doi.org/10.3892/etm.2021.10750
    48. Inorganics | Free Full-Text | Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review. (n.d.). Retrieved March 14, 2024, from https://www.mdpi.com/2304-6740/10/10/169
    49. Jensen, G., Holloway, J. L., & Stabenfeldt, S. E. (2020). Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells, 9(9), 2113. https://doi.org/10.3390/cells9092113
    50. JFB | Free Full-Text | Biodegradable Materials and Metallic Implants—A Review. (n.d.). Retrieved March 9, 2024, from https://www.mdpi.com/2079-4983/8/4/44
    51. Kato, Y., Onishi, H., & Machida, Y. (n.d.). Application of Chitin and Chitosan Derivatives in the Pharmaceutical Field. Current Pharmaceutical Biotechnology, 4(5), 303–309.
    52. Khaliq, T., Sohail, M., Minhas, M. U., Ahmed Shah, S., Jabeen, N., Khan, S., Hussain, Z., Mahmood, A., Kousar, M., & Rashid, H. (2022). Self-crosslinked chitosan/κ-carrageenan-based biomimetic membranes to combat diabetic burn wound infections. International Journal of Biological Macromolecules, 197, 157–168. https://doi.org/10.1016/j.ijbiomac.2021.12.100
    53. Kılıçay, E., Demirbilek, M., Türk, M., Güven, E., Hazer, B., & Denkbas, E. B. (2011). Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. European Journal of Pharmaceutical Sciences, 44(3), 310–320. https://doi.org/10.1016/j.ejps.2011.08.013
    54. Klavert, J., & van der Eerden, B. C. J. (2021). Fibronectin in Fracture Healing: Biological Mechanisms and Regenerative Avenues. Frontiers in Bioengineering and Biotechnology, 9, 663357. https://doi.org/10.3389/fbioe.2021.663357
    55. Kulinets, I. (2015). 1—Biomaterials and their applications in medicine. In S. F. Amato & R. M. Ezzell (Eds.), Regulatory Affairs for Biomaterials and Medical Devices (pp. 1–10). Woodhead Publishing. https://doi.org/10.1533/9780857099204.1
    56. Kumar Gupta, G., De, S., Franco, A., Balu, A. M., & Luque, R. (2015a). Sustainable Biomaterials: Current Trends, Challenges and Applications. Molecules, 21(1), 48. https://doi.org/10.3390/molecules21010048
    57. Kumar Gupta, G., De, S., Franco, A., Balu, A. M., & Luque, R. (2015b). Sustainable Biomaterials: Current Trends, Challenges and Applications. Molecules, 21(1), 48. https://doi.org/10.3390/molecules21010048
    58. Kumar, N., Langer, R. S., & Domb, A. J. (2002). Polyanhydrides: An overview. Advanced Drug Delivery Reviews, 54(7), 889–910. https://doi.org/10.1016/S0169-409X(02)00050-9
    59. Lee, W. K., Park, K. D., Keun Han, D., Suh, H., Park, J.-C., & Kim, Y. H. (2000). Heparinized bovine pericardium as a novel cardiovascular bioprosthesis. Biomaterials, 21(22), 2323–2330. https://doi.org/10.1016/S0142-9612(00)00159-9
    60. Lefèvre, T., & Auger, M. (2016). Spider silk inspired materials and sustainability: Perspective. Materials Technology, 1–16. https://doi.org/10.1179/1753555715Y.0000000065
    61. Leong, K. W., Kost, J., Mathiowitz, E., & Langer, R. (1986). Polyanhydrides for controlled release of bioactive agents. Biomaterials, 7(5), 364–371. https://doi.org/10.1016/0142-9612(86)90007-4
    62. Li, Z., Song, J., Zhang, J., Hao, K., Liu, L., Wu, B., Zheng, X., Xiao, B., Tong, X., & Dai, F. (2020). Topical application of silk fibroin-based hydrogel in preventing hypertrophic scars. Colloids and Surfaces B: Biointerfaces, 186, 110735. https://doi.org/10.1016/j.colsurfb.2019.110735
    63. Liang, Z., Zhu, H., Wang, X., Jing, B., Li, Z., Xia, X., Sun, H., Yang, Y., & Sun, B. (2020). Adjuvants for Coronavirus Vaccines. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.589833
    64. Little, C. J., Bawolin, N. K., & Chen, X. (2011). Mechanical Properties of Natural Cartilage and Tissue-Engineered Constructs. Tissue Engineering Part B: Reviews, 17(4), 213–227. https://doi.org/10.1089/ten.teb.2010.0572
    65. Liu, S., Huang, D., Hu, Y., Zhang, J., Chen, B., Zhang, H., Dong, X., Tong, R., Li, Y., & Zhou, W. (n.d.). Sodium alginate/collagen composite multiscale porous scaffolds containing poly(ε-caprolactone) microspheres fabricated based on additive manufacturing technology. RSC Advances, 10(64), 39241–39250. https://doi.org/10.1039/d0ra04581k
    66. Liu, S., Yu, J.-M., Gan, Y.-C., Qiu, X.-Z., Gao, Z.-C., Wang, H., Chen, S.-X., Xiong, Y., Liu, G.-H., Lin, S.-E., McCarthy, A., John, J. V., Wei, D.-X., & Hou, H.-H. (2023). Biomimetic natural biomaterials for tissue engineering and regenerative medicine: New biosynthesis methods, recent advances, and emerging applications. Military Medical Research, 10, 16. https://doi.org/10.1186/s40779-023-00448-w
    67. Mahmood, A., Patel, D., Hickson, B., DesRochers, J., & Hu, X. (2022). Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. International Journal of Molecular Sciences, 23(3), 1415. https://doi.org/10.3390/ijms23031415
    68. Malhotra, N., Joshi, M., Dey, S., Sahoo, R., Verma, S., & Asish, K. (2023). Recent trends in chronic pain medicine. Indian Journal of Anesthesia, 67(1), 123–129. https://doi.org/10.4103/ija.ija_31_23
    69. Mani, M. P., Sadia, M., Jaganathan, S. K., Khudzari, A. Z., Supriyanto, E., Saidin, S., Ramakrishna, S., Ismail, A. F., & Faudzi, A. A. M. (2022). A review on 3D printing in tissue engineering applications. Journal of Polymer Engineering, 42(3), 243–265. https://doi.org/10.1515/polyeng-2021-0059
    70. Materials | Free Full-Text | Biodegradable Materials for Bone Repair and Tissue Engineering Applications. (n.d.). Retrieved March 9, 2024, from https://www.mdpi.com/1996-1944/8/9/5744
    71. Materials for Biomedical Engineering: Bioactive Materials, Properties, and Applications—1st Edition | Elsevier Shop. (n.d.). Retrieved March 26, 2024, from https://shop.elsevier.com/books/materials-for-biomedical-engineering-bioactive-materials-properties-and-applications/grumezescu/978-0-12-818431-8
    72. Md, S., Kuldeep Singh, J. K. A., Waqas, M., Pandey, M., Choudhury, H., Habib, H., Hussain, F., & Hussain, Z. (2019). Nanoencapsulation of betamethasone valerate using high pressure homogenization-solvent evaporation technique: Optimization of formulation and process parameters for efficient dermal targeting. Drug Development and Industrial Pharmacy, 45(2), 323–332. https://doi.org/10.1080/03639045.2018.1542704
    73. Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds—PMC. (n.d.). Retrieved March 14, 2024, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915662/
    74. Misra, S. K., Ostadhossein, F., Babu, R., Kus, J., Tankasala, D., Sutrisno, A., Walsh, K. A., Bromfield, C. R., & Pan, D. (2017). 3D‐Printed Multidrug‐Eluting Stent from Graphene‐Nanoplatelet‐Doped Biodegradable Polymer Composite. Advanced Healthcare Materials, 6(11), 1700008. https://doi.org/10.1002/adhm.201700008
    75. Mohanty, A. K., Wu, F., Mincheva, R., Hakkarainen, M., Raquez, J.-M., Mielewski, D. F., Narayan, R., Netravali, A. N., & Misra, M. (2022). Sustainable polymers. Nature Reviews Methods Primers, 2(1). https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-316857
    76. Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & AbdulGhani, A. (2022a). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry, 5, 100273. https://doi.org/10.1016/j.crgsc.2022.100273
    77. Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & AbdulGhani, A. (2022b). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry, 5, 100273. https://doi.org/10.1016/j.crgsc.2022.100273
    78. Naderi, H., Matin, M. M., & Bahrami, A. R. (2011). Review paper: Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of Biomaterials Applications, 26(4), 383–417. https://doi.org/10.1177/0885328211408946
    79. Nelson, D. W., & Gilbert, R. J. (2021). Extracellular matrix-mimetic hydrogels for treating neural tissue injury: A focus on fibrin, hyaluronic acid, and elastin-like polypeptide hydrogels. Advanced Healthcare Materials, 10(22), e2101329. https://doi.org/10.1002/adhm.202101329
    80. Nongbet, A., Mishra, A. K., Mohanta, Y. K., Mahanta, S., Ray, M. K., Khan, M., Baek, K.-H., & Chakrabartty, I. (2022). Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. Plants, 11(19), 2587. https://doi.org/10.3390/plants11192587
    81. Nonviral vectors in cancer gene therapy: Principles and pro... : Anti-Cancer Drugs. (n.d.). Retrieved March 14, 2024, from https://journals.lww.com/anticancerdrugs/abstract/2001/04000/non_viral_vectors_in_cancer_gene_therapy_.1.aspx
    82. Oryan, A., Jalili, M., Kamali, A., & Nikahval, B. (2018). The concurrent use of probiotic microorganism and collagen hydrogel/scaffold enhances burn wound healing: An in vivo evaluation. Burns, 44(7), 1775–1786. https://doi.org/10.1016/j.burns.2018.05.016
    83. Park, S.-B., Lih, E., Park, K.-S., Joung, Y. K., & Han, D. K. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68, 77–105. https://doi.org/10.1016/j.progpolymsci.2016.12.003
    84. Parker, J. B., Griffin, M. F., Spielman, A. F., Wan, D. C., & Longaker, M. T. (2023). Exploring the Overlooked Roles and Mechanisms of Fibroblasts in the Foreign Body Response. Advances in Wound Care, 12(2), 85–96. https://doi.org/10.1089/wound.2022.0066
    85. Patel, N., Davis, Z., Hofmann, C., Vlasak, J., Loughney, J. W., DePhillips, P., & Mukherjee, M. (2023). Development and Characterization of an In Vitro Cell-Based Assay to Predict Potency of mRNA–LNP-Based Vaccines. Vaccines, 11(7), Article 7. https://doi.org/10.3390/vaccines11071224
    86. Pattanashetti, N. A., Heggannavar, G. B., & Kariduraganavar, M. Y. (2017). Smart Biopolymers and their Biomedical Applications. Procedia Manufacturing, 12, 263–279. https://doi.org/10.1016/j.promfg.2017.08.030
    87. Pawar, V., Maske, P., Khan, A., Ghosh, A., Keshari, R., Bhatt, M., & Srivastava, R. (2023). Responsive Nanostructure for Targeted Drug Delivery. Journal of Nanotheranostics, 4(1), Article 1. https://doi.org/10.3390/jnt4010004
    88. Peng, T., Gibula, P., Yao, K., & Goosen, M. F. A. (1996). Role of polymers in improving the results of stenting in coronary arteries. Biomaterials, 17(7), 685–694. https://doi.org/10.1016/0142-9612(96)86738-X
    89. Pesode, P., Barve, S., Wankhede, S. V., & Ahmad, A. (2023). Sustainable Materials and Technologies for Biomedical Applications. Advances in Materials Science and Engineering, 2023, e6682892. https://doi.org/10.1155/2023/6682892
    90. Polymers | Free Full-Text | Comparative Efficacies of a 3D-Printed PCL/PLGA/β-TCP Membrane and a Titanium Membrane for Guided Bone Regeneration in Beagle Dogs. (n.d.). Retrieved March 26, 2024, from https://www.mdpi.com/2073-4360/7/10/1500
    91. Polymers | Free Full-Text | Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. (n.d.). Retrieved March 15, 2024, from https://www.mdpi.com/2073-4360/3/3/1377
    92. Polymers | Free Full-Text | Surface Modification of Sponge-like Porous Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Gelatin Blend Scaffolds for Potential Biomedical Applications. (n.d.). Retrieved March 16, 2024, from https://www.mdpi.com/2073-4360/14/9/1710
    93. Pradhan, D., & Sukla, L. B. (2017). Thin film of Yttria stabilized zirconia on NiO using vacuum cold spraying process for solid oxide fuel cell. International Journal of Nano and Biomaterials, 7(1), 38. https://doi.org/10.1504/IJNBM.2017.089322
    94. Processes | Free Full-Text | Liposomes: From Bangham to Supercritical Fluids. (n.d.). Retrieved March 15, 2024, from https://www.mdpi.com/2227-9717/8/9/1022
    95. Qiu, S., Zhou, Y., Waterhouse, G. I. N., Gong, R., Xie, J., Zhang, K., & Xu, J. (2021). Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chemistry, 334, 127487. https://doi.org/10.1016/j.foodchem.2020.127487
    96. R, R., Philip, E., Madhavan, A., Sindhu, R., Pugazhendhi, A., Binod, P., Sirohi, R., Awasthi, M. K., Tarafdar, A., & Pandey, A. (2021). Advanced biomaterials for sustainable applications in the food industry: Updates and challenges. Environmental Pollution, 283, 117071. https://doi.org/10.1016/j.envpol.2021.117071
    97. Rancan, F., Papakostas, D., Hadam, S., Hackbarth, S., Delair, T., Primard, C., Verrier, B., Sterry, W., Blume-Peytavi, U., & Vogt, A. (2009). Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy. Pharmaceutical Research, 26(8), 2027–2036. https://doi.org/10.1007/s11095-009-9919-x
    98. Reddy, N., Reddy, R., & Jiang, Q. (2015). Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 33(6), 362–369. https://doi.org/10.1016/j.tibtech.2015.03.008
    99. Rezvani Ghomi, E., Khalili, S., Nouri Khorasani, S., Esmaeely Neisiany, R., & Ramakrishna, S. (2019). Wound dressings: Current advances and future directions. Journal of Applied Polymer Science, 136(27), 47738. https://doi.org/10.1002/app.47738
    100. Roshandel, M., & Dorkoosh, F. (2021). Cardiac tissue engineering, biomaterial scaffolds, and their fabrication techniques. Polymers for Advanced Technologies, 32(6), 2290–2305. https://doi.org/10.1002/pat.5273
    101. Rundén-Pran, E., Mariussen, E., El Yamani, N., Elje, E., Longhin, E. M., & Dusinska, M. (2022). The colony forming efficiency assay for toxicity testing of nanomaterials—Modifications for higher-throughput. Frontiers in Toxicology, 4, 983316. https://doi.org/10.3389/ftox.2022.983316
    102. Salehi, M., Ehterami, A., Farzamfar, S., Vaez, A., & Ebrahimi-Barough, S. (2021). Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model. Drug Delivery and Translational Research, 11(1), 142–153. https://doi.org/10.1007/s13346-020-00731-6
    103. Sarangthem, V., Singh, T. D., & Dinda, A. K. (2021). Emerging Role of Elastin-Like Polypeptides in Regenerative Medicine. Advances in Wound Care, 10(5), 257–269. https://doi.org/10.1089/wound.2019.1085
    104. Sathiyavimal, S., Vasantharaj, S., LewisOscar, F., Selvaraj, R., Brindhadevi, K., & Pugazhendhi, A. (2020). Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Progress in Organic Coatings, 147, 105858. https://doi.org/10.1016/j.porgcoat.2020.105858
    105. Sellappan, L. K., Anandhavelu, S., Doble, M., Perumal, G., Jeon, J.-H., Vikraman, D., & Kim, H.-S. (2022). Biopolymer film fabrication for skin mimetic tissue regenerative wound dressing applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(3), 196–207. https://doi.org/10.1080/00914037.2020.1817019
    106. Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., & Glogauer, M. (2015). Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials, 8(9), 5744–5794. https://doi.org/10.3390/ma8095273
    107. Song, W., Lima, A. C., & Mano, J. F. (2010). Bioinspired methodology to fabricate hydrogel spheres for multiapplications using superhydrophobic substrates. Soft Matter, 6(23), 5868–5871. https://doi.org/10.1039/C0SM00901F
    108. Stoddart, A., & Cleave, V. (2009). The evolution of biomaterials. Nature Materials, 8(6), 444–445. https://doi.org/10.1038/nmat2447
    109. Study of novel chitosan‐gelatin artificial skin in vitro—Mao—2003—Journal of Biomedical Materials Research Part A - Wiley Online Library. (n.d.). Retrieved March 14, 2024, from https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.10223
    110. Sun, G., Zhang, X., Shen, Y.-I., Sebastian, R., Dickinson, L. E., Fox-Talbot, K., Reinblatt, M., Steenbergen, C., Harmon, J. W., & Gerecht, S. (2011). Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proceedings of the National Academy of Sciences, 108(52), 20976–20981. https://doi.org/10.1073/pnas.1115973108
    111. Sun, S., Cui, Y., Yuan, B., Dou, M., Wang, G., Xu, H., Wang, J., Yin, W., Wu, D., & Peng, C. (2023). Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Frontiers in Bioengineering and Biotechnology, 11, 1117647. https://doi.org/10.3389/fbioe.2023.1117647
    112. Sustainability | Free Full-Text | Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review. (n.d.). Retrieved March 23, 2024, from https://www.mdpi.com/2071-1050/13/19/10925
    113. Szekalska, M., Sosnowska, K., Tomczykowa, M., Winnicka, K., Kasacka, I., & Tomczyk, M. (2020). In vivo anti-inflammatory and anti-allergic activities of cynaroside evaluated by using hydrogel formulations. Biomedicine & Pharmacotherapy, 121, 109681. https://doi.org/10.1016/j.biopha.2019.109681
    114. Tao, F., Ma, S., Tao, H., Jin, L., Luo, Y., Zheng, J., Xiang, W., & Deng, H. (2021). Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment – A review. Carbohydrate Polymers, 251, 117063. https://doi.org/10.1016/j.carbpol.2020.117063
    115. Tenchov, R., Bird, R., Curtze, A. E., & Zhou, Q. (2021). Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, 15(11), 16982–17015. https://doi.org/10.1021/acsnano.1c04996
    116. Tønnesen, H. H., & Karlsen, J. (2002). Alginate in drug delivery systems. Drug Development and Industrial Pharmacy, 28(6), 621–630. https://doi.org/10.1081/ddc-120003853
    117. Torres, M. P., Determan, A. S., Anderson, G. L., Mallapragada, S. K., & Narasimhan, B. (2007). Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials, 28(1), 108–116. https://doi.org/10.1016/j.biomaterials.2006.08.047
    118. Tripathi, D., Rastogi, K., Tyagi, P., Rawat, H., Mittal, G., Jamini, A., Singh, H., & Tyagi, A. (2021). Comparative Analysis of Collagen and Chitosan-based Dressing for Hemostatic and Wound Healing Application. AAPS PharmSciTech, 22(3), 76. https://doi.org/10.1208/s12249-021-01944-9
    119. Troy, E., Tilbury, M. A., Power, A. M., & Wall, J. G. (2021). Nature-Based Biomaterials and Their Application in Biomedicine. Polymers, 13(19), 3321. https://doi.org/10.3390/polym13193321
    120. Udayakumar, G. P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Sivamani, S., Sivakumar, N., Hosseini-Bandegharaei, A., & Show, P. L. (2021). Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering, 9(4), 105322. https://doi.org/10.1016/j.jece.2021.105322
    121. Varma, K., & Gopi, S. (2021a). Biopolymers and their role in medicinal and pharmaceutical applications. In Biopolymers and their Industrial Applications (pp. 175–191). Elsevier. https://doi.org/10.1016/B978-0-12-819240-5.00007-9
    122. Varma, K., & Gopi, S. (2021b). Chapter 7—Biopolymers and their role in medicinal and pharmaceutical applications. In S. Thomas, S. Gopi, & A. Amalraj (Eds.), Biopolymers and their Industrial Applications (pp. 175–191). Elsevier. https://doi.org/10.1016/B978-0-12-819240-5.00007-9
    123. Visco, A., Scolaro, C., Facchin, M., Brahimi, S., Belhamdi, H., Gatto, V., & Beghetto, V. (2022). Agri-Food Wastes for Bioplastics: European Prospective on Possible Applications in Their Second Life for a Circular Economy. Polymers, 14(13), 2752. https://doi.org/10.3390/polym14132752
    124. Wachol-Drewek, Z., Pfeiffer, M., & Scholl, E. (1996). Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials, 17(17), 1733–1738. https://doi.org/10.1016/0142-9612(96)87654-X
    125. Wang, J., Li, B., Qiu, L., Qiao, X., & Yang, H. (2022). Dendrimer-based drug delivery systems: History, challenges, and latest developments. Journal of Biological Engineering, 16(1), 18. https://doi.org/10.1186/s13036-022-00298-5
    126. Wróblewska-Krepsztul, J., Rydzkowski, T., Michalska-Pożoga, I., & Thakur, V. K. (2019). Biopolymers for Biomedical and Pharmaceutical Applications: Recent Advances and Overview of Alginate Electrospinning. Nanomaterials, 9(3), Article 3. https://doi.org/10.3390/nano9030404
    127. Yang, X., Lu, Z., Wu, H., Li, W., Zheng, L., & Zhao, J. (2018). Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Materials Science and Engineering: C, 83, 195–201. https://doi.org/10.1016/j.msec.2017.09.002
    128. Yang, X., Zhao, K., & Chen, G.-Q. (2002). Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials, 23(5), 1391–1397. https://doi.org/10.1016/S0142-9612(01)00260-5
    129. Yoon, D. S., Lee, Y., Ryu, H. A., Jang, Y., Lee, K.-M., Choi, Y., Choi, W. J., Lee, M., Park, K. M., Park, K. D., & Lee, J. W. (2016). Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomaterialia, 38, 59–68. https://doi.org/10.1016/j.actbio.2016.04.030
    130. Zarrintaj, P., Manouchehri, S., Ahmadi, Z., Saeb, M. R., Urbanska, A. M., Kaplan, D. L., & Mozafari, M. (2018). Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 187, 66–84. https://doi.org/10.1016/j.carbpol.2018.01.060
    131. Zhang, C., Li, Y., Kang, W., Liu, X., & Wang, Q. (2021). Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMat, 1(1), 127–147. https://doi.org/10.1002/sus2.11
    132. Zhang, H., Mao, X., Zhao, D., Jiang, W., Du, Z., Li, Q., Jiang, C., & Han, D. (2017). Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model. Scientific Reports, 7(1), 15255. https://doi.org/10.1038/s41598-017-14923-7
    133. Zhang, Y., Lim, C. T., Ramakrishna, S., & Huang, Z.-M. (2005). Recent development of polymer nanofibers for biomedical and biotechnological applications. Journal of Materials Science: Materials in Medicine, 16(10), 933–946. https://doi.org/10.1007/s10856-005-4428-x
    134. Zhang, Y., & Zhang, M. (2001). Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates. Journal of Non-Crystalline Solids, 282(2), 159–164. https://doi.org/10.1016/S0022-3093(01)00345-3
    135. Zybutz, M. D., Laurell, L., Rapoport, D. A., & Rutger Persson, G. (2000). Treatment of intrabony defects with resorbable materials, non‐resorbable materials and flap debridement. Journal of Clinical Periodontology, 27(3), 169–178. https://doi.org/10.1034/j.1600-051x.2000.027003169.x

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Weerarathna, I. N., Kumar, P., Luharia, A., & Mishra, G. (2024). Sustainable biomaterials for pharmaceutical and medical applications. Multidisciplinary Reviews, 8(5), 2025141. https://doi.org/10.31893/multirev.2025141
  • Article viewed - 302
  • PDF downloaded - 157