• Abstract

    Diabetes mellitus (DM) is a chronic hyperglycemic condition that shares a pathological correlation with increased oxidative stress (OS) and dyslipidaemia that underlines its comorbidities. The following review is confined to the diagnostic significance of superoxide dismutase (SOD) and serum cholesterol in diabetes. SOD is a member of the large and diverse class of antioxidant enzymes that help counteract the adverse effects of OS by removing poisons from the cell structure in the form of superoxide radicals. Fluctuations in the SOD level of diabetic patients show the degree of OS and its role in worsening the condition. Triglycerides (TG), low-density lipoprotein (LDL) (often known as "bad cholesterol"), high-density lipoprotein (HDL) (sometimes known as "good cholesterol"), and total cholesterol are the three categories into which serum cholesterol can be divided. These components are significant indicators for patients' lipid levels and cardiovascular risk prediction. The evaluation of SOD activity as well as the serum cholesterol levels, proved helpful in addressing the oxidative and lipid profile analysis results of diabetic patients. Symptoms of dyslipidemia, in combination with decreased activity of SOD, contribute to the development of cardiovascular pathology. Therefore, this review will gather information from the clinical and experimental literature and focus on using these biomarkers in diagnosing diabetes in its early stages and evaluating risk and treatment outcomes in DM. Osteoarthritis (OA) and enzyme-linked immunosorbent assays (ELISA), to be included in the control of diabetes in an individual approach.

  • References

    1. Altobelli, G. G., Van Noorden, S., Balato, A., & Cimini, V. (2020). Copper/zinc superoxide dismutase in human skin: Current knowledge. Frontiers in Medicine, 7, 183. https://doi.org/10.3389/fmed.2020.00183
    2. Badawy, M. A. E. M. D., Naing, L., Johar, S., et al. (2022). Evaluation of cardiovascular diseases risk calculators for CVDs prevention and management: Scoping review. BMC Public Health, 22, 1742. https://doi.org/10.1186/s12889-022-13944-w
    3. Batinic-Haberle, I., Tovmasyan, A., Roberts, E. R. H., Vujaskovic, Z., Leong, K. W., & Spasojevic, I. (2014). SOD therapeutics: Latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxidants & Redox Signaling, 20(15), 2372–2415. https://doi.org/10.1089/ars.2012.5147
    4. Bhatti, J. S., Sehrawat, A., Mishra, J., et al. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutic strategies and future perspectives. Free Radical Biology and Medicine, 184, 114–134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
    5. Cena, H., & Calder, P. C. (2020). Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients, 12(2), 334. https://doi.org/10.3390/nu12020334
    6. Chhetry, M., & Jialal, I. (2023). Lipid-lowering drug therapy. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
    7. Damaskos, C., Garmpis, N., Kollia, P., et al. (2020). Assessing cardiovascular risk in patients with diabetes: An update. Current Cardiology Reviews, 16(3), 266–274. https://doi.org/10.2174/1573403X15666191111123622
    8. Eid, S., Sas, K. M., Abcouwer, S. F., Feldman, E. L., Gardner, T. W., Pennathur, S., & Fort, P. E. (2019). New insights into the mechanisms of diabetic complications: Role of lipids and lipid metabolism. Diabetologia, 62(9), 1539–1549. https://doi.org/10.1007/s00125-019-4959-1
    9. Enkhmaa, B., Surampudi, P., Anuurad, E., & Berglund, L. (2000). Lifestyle changes: Effect of diet, exercise, functional food, and obesity treatment on lipids and lipoproteins. In K. R. Feingold, B. Anawalt, M. R. Blackman, et al. (Eds.), MDText.com, Inc. South Dartmouth (MA).
    10. Feingold, K. R., Anawalt, B., Blackman, M. R., et al. (2000). Cholesterol lowering drugs. In Endotext [Internet]. South Dartmouth (MA): MDText.com.
    11. Fu, Q., Hu, L., Shen, T., Yang, R., & Jiang, L. (2022). Recent advances in gene therapy for familial hypercholesterolemia: An update review. Journal of Clinical Medicine, 11(22), 6773. https://doi.org/10.3390/jcm11226773
    12. Fujita, H., Fujishima, H., Chida, S., et al. (2009). Reduction of renal superoxide dismutase in progressive diabetic nephropathy. Journal of the American Society of Nephrology, 20(6), 1303–1313. https://doi.org/10.1681/ASN.2008080844
    13. Fukai, T., & Ushio-Fukai, M. (2011). Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxidants & Redox Signaling, 15(6), 1583–1606. https://doi.org/10.1089/ars.2011.3999
    14. Galaviz, K. I., Narayan, K. M. V., Lobelo, F., & Weber, M. B. (2015). Lifestyle and the prevention of type 2 diabetes: A status report. American Journal of Lifestyle Medicine, 12(1), 4–20. https://doi.org/10.1177/1559827615619159
    15. Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., et al. (2020). Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275
    16. García-Pérez, L.-E., Álvarez, M., Dilla, T., Gil-Guillén, V., & Orozco-Beltrán, D. (2013). Adherence to therapies in patients with type 2 diabetes. Diabetes Therapy, 4(2), 175–194. https://doi.org/10.1007/s13300-013-0034-y
    17. Giri, B., Dey, S., Das, T., Sarkar, M., Banerjee, J., & Dash, S. K. (2018). Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression, and other pathophysiological consequences: An update on glucose toxicity. Biomedicine & Pharmacotherapy, 107, 306–328. https://doi.org/10.1016/j.biopha.2018.07.157
    18. Goetz, L. H., & Schork, N. J. (2018). Personalized medicine: Motivation, challenges and progress. Fertility and Sterility, 109(6), 952–963. https://doi.org/10.1016/j.fertnstert.2018.05.006
    19. Gómez-Marcos, M. A., Blázquez-Medela, A. M., Gamella-Pozuelo, L., Recio-Rodriguez, J. I., García-Ortiz, L., & Martínez-Salgado, C. (2016). Serum superoxide dismutase is associated with vascular structure and function in hypertensive and diabetic patients. Oxidative Medicine and Cellular Longevity, 2016, 9124676. https://doi.org/10.1155/2016/9124676
    20. González, P., Lozano, P., Ros, G., & Solano, F. (2023). Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections. International Journal of Molecular Sciences, 24(11), 9352. https://doi.org/10.3390/ijms24119352
    21. Haydinger, C. D., Oliver, G. F., Ashander, L. M., & Smith, J. R. (2023). Oxidative stress and its regulation in diabetic retinopathy. Antioxidants, 12(8), 1649. https://doi.org/10.3390/antiox12081649
    22. Holley, A. K., Bakthavatchalu, V., Velez-Roman, J. M., & St Clair, D. K. (2011). Manganese superoxide dismutase: Guardian of the powerhouse. International Journal of Molecular Sciences, 12(10), 7114–7162. https://doi.org/10.3390/ijms12107114
    23. Jiménez-Cortegana, C., Iglesias, P., Ribalta, J., et al. (2021). Nutrients and dietary approaches in patients with type 2 diabetes mellitus and cardiovascular disease: A narrative review. Nutrients, 13(11), 4150. https://doi.org/10.3390/nu13114150
    24. Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovascular Diabetology, 4(5). https://doi.org/10.1186/1475-2840-4-5
    25. Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology, 97(9), 2499–2574. https://doi.org/10.1007/s00204-023-03562-9
    26. Jyotsna, F., Ahmed, A., Kumar, K., et al. (2023). Exploring the complex connection between diabetes and cardiovascular disease: Analyzing approaches to mitigate cardiovascular risk in patients with diabetes. Cureus, 15, e43882. https://doi.org/10.7759/cureus.43882
    27. Kessler, T., & Schunkert, H. (2022). Genomic strategies toward identification of novel therapeutic targets. In A. von Eckardstein & C. J. Binder (Eds.), Springer. Cham.
    28. Khavandi, M., Duarte, F., Ginsberg, H. N., & Reyes-Soffer, G. (2017). Treatment of dyslipidemias to prevent cardiovascular disease in patients with type 2 diabetes. Current Cardiology Reports, 19(7). https://doi.org/10.1007/s11886-017-0818-1
    29. Krishnan, G., Singh, S., Pathania, M., Gosavi, S., Abhishek, S., Parchani, A., & Dhar, M. (2023). Artificial intelligence in clinical medicine: Catalyzing a sustainable global healthcare paradigm. Frontiers in Artificial Intelligence, 6, 1227091. https://doi.org/10.3389/frai.2023.1227091
    30. Lee, Y., & Siddiqui, W. J. (2024). Cholesterol levels. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
    31. Liberopoulos, E. N., Florentin, M., Mikhailidis, D. P., & Elisaf, M. S. (2008). Compliance with lipid-lowering therapy and its impact on cardiovascular morbidity and mortality. Expert Opinion on Drug Safety, 7(6), 717–725. https://doi.org/10.1517/14740330802396984
    32. Linton, M. F., Yancey, P. G., Davies, S. S., et al. (2019). The role of lipids and lipoproteins in atherosclerosis. In M. D. Text (Ed.), Endotext. MDText.com, Inc.
    33. López-Contreras, A. K., Martínez-Ruiz, M. G., Olvera-Montaño, C., et al. (2020). Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy. Antioxidants, 9(9), 891. https://doi.org/10.3390/antiox9090891
    34. Madi, M., Babu, S., Kumari, S., Shetty, S., Achalli, S., Madiyal, A., & Bhat, M. (2016). Status of serum and salivary levels of superoxide dismutase in type 2 diabetes mellitus with oral manifestations: A case control study. Ethiopian Journal of Health Sciences, 26(6), 523–532. https://doi.org/10.4314/ejhs.v26i6.4
    35. Martín-Timón, I., Sevillano-Collantes, C., Segura-Galindo, A., & del Cañizo-Gómez, F. J. (2014). Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World Journal of Diabetes, 5(4), 444–470. https://doi.org/10.4239/wjd.v5.i4.444
    36. Matough, F. A., Budin, S. B., Hamid, Z. A., Alwahaibi, N., & Mohamed, J. (2012). The role of oxidative stress and antioxidants in diabetic complications. Universal Medical Journal, 12, 5–18. https://doi.org/10.12816/0003082
    37. Natesan, V., & Kim, S.-J. (2021). Lipid metabolism, disorders and therapeutic drugs – Review. Biomolecules & Therapeutics (Seoul), 29(6), 596–604. https://doi.org/10.4062/biomolther.2021.122
    38. Panda, P., Verma, H. K., Lakkakula, S., et al. (2022). Biomarkers of oxidative stress tethered to cardiovascular diseases. Oxidative Medicine and Cellular Longevity, 2022, 9154295. https://doi.org/10.1155/2022/9154295
    39. Pokhrel, B., Pellegrini, M. V., & Levine, S. N. (2024). PCSK9 inhibitors. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
    40. Rader, D. J., & Haffner, S. M. (1999). Role of fibrates in the management of hypertriglyceridemia. American Journal of Cardiology, 83(9B), 30–35. https://doi.org/10.1016/S0002-9149(99)00270-2
    41. Rodriguez-León, C., Villalonga, C., Munoz-Torres, M., Ruiz, J. R., & Banos, O. (2021). Mobile and wearable technology for the monitoring of diabetes-related parameters: Systematic review. JMIR Mhealth and Uhealth, 9, e25138. https://doi.org/10.2196/25138
    42. Rosa, A. C., Corsi, D., Cavi, N., Bruni, N., & Dosio, F. (2021). Superoxide dismutase administration: A review of proposed human uses. Molecules, 25(7), 1844. https://doi.org/10.3390/molecules26071844
    43. Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H., & Morimoto, S. (2018). Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. Journal of Natural Medicines, 72(1), 32–42. https://doi.org/10.1007/s11418-017-1144-z
    44. Schofield, J. D., Liu, Y., Rao-Balakrishna, P., Malik, R. A., & Soran, H. (2016). Diabetes dyslipidemia. Diabetes Therapy, 7(2), 203–219. https://doi.org/10.1007/s13300-016-0167-x
    45. Shajari, S., Kuruvinashetti, K., Komeili, A., & Sundararaj, U. (2023). The emergence of AI-based wearable sensors for digital health technology: A review. Sensors, 23(23), 9498. https://doi.org/10.3390/s23239498
    46. Tian, J., Chen, H., Jia, F., et al. (2015). Trends in the levels of serum lipids and lipoproteins and the prevalence of dyslipidemia in adults with newly diagnosed type 2 diabetes in the southwest Chinese Han population during 2003–2012. International Journal of Endocrinology, 2015, 818075. https://doi.org/10.1155/2015/818075
    47. Trikkalinou, A., Papazafiropoulou, A. K., & Melidonis, A. (2017). Type 2 diabetes and quality of life. World Journal of Diabetes, 8(4), 120–129. https://doi.org/10.4239/wjd.v8.i4.120
    48. Yan, Z., & Spaulding, H. R. (2020). Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biology, 32, 101508. https://doi.org/10.1016/j.redox.2020.101508
    49. Yang, T., Liu, Y., Li, L., et al. (2022). Correlation between the triglyceride-to-high-density lipoprotein cholesterol ratio and other unconventional lipid parameters with the risk of prediabetes and type 2 diabetes in patients with coronary heart disease. Cardiovascular Diabetology, 21(93). https://doi.org/10.1186/s12933-022-01531-7
    50. Younus, H. (2018). Therapeutic potentials of superoxide dismutase. International Journal of Health Sciences (Qassim), 12(3), 88–93.
    51. Zahalka, S. J., Abushamat, L. A., Scalzo, R. L., & Reusch, J. E. B. (2023). The role of exercise in diabetes. In K. R. Feingold, B. Anawalt, M. R. Blackman, et al. (Eds.), MDText.com, Inc. South Dartmouth (MA).
    52. Zheng, M., Liu, Y., Zhang, G., Yang, Z., Xu, W., & Chen, Q. (2023). Applications and mechanisms of superoxide dismutase in medicine, food, and cosmetics. Antioxidants, 12(16), 1675. https://doi.org/10.3390/antiox12091675

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Basheeruddin, M., & Qausain, S. (2024). Clinical applications and research advances in superoxide dismutase and serum cholesterol as diagnostic biomarkers in diabetes . Multidisciplinary Reviews, 8(4), e2025112. https://doi.org/10.31893/multirev.2025112
  • Article viewed - 212
  • PDF downloaded - 96