• Abstract

    The motive of designing a low-power system is to have a long battery life. One can carefully apply low-power design techniques to achieve low power consumption with proper system functioning to increase battery life. One such system where many devices are generally battery-operated and connected to the internet is the Internet of Things (IoT). IoT devices are used widely to gather data to propel actions and transmit the data for data analysis, connectivity, and automation. So much research is focused on IoT communication and computation in IoT devices, which increases power consumption. This survey explores low-power design strategies used at the architectural level. Additionally, it highlights the IoT features that give opportunities to apply low-power design methodologies to achieve less power consumption in IoT. Low-power design techniques are critical for the efficient functioning of Internet of Things (IoT) applications, where devices often operate in resource-constrained environments with limited power sources like batteries. Many applications of IoT are noticed including the domains such as industry, environment, and society, which are highly power-consuming because of the features such as computation, communication, security, and fault tolerance. Researchers have already reported the usefulness of many such techniques including architecture-level low-power design techniques. Still, it is observed that the work carried out is inadequate regarding power consumption, and communication bandwidth bottlenecks. In the present work, a rigorous literature survey is carried out based on low-power design techniques to support sustainable growth of IoT applications across various domains and power optimization.

  • References

    1. Adegbija, T., Rogacs, A., Patel, C., Gordon-Ross, A. (2015). Enabling right-provisioned microprocessor architectures for the Internet of Things. Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition IMECE2015, 1–10. Houston, Texas.
    2. Afzaal, U., & Lee, J. (2020). Low-cost Hardware Redundancy for Fault-mitigation in Power-constrained IoT Systems. 2020 International Conference on Information and Communication Technology Convergence (ICTC), 60–62. Jeju, Korea (South). https://doi.org/10.1109/ICTC49870.2020.9289420
    3. Ainsworth, S., & Jones, T. M. (2018). Parallel Error Detection Using Heterogeneous Cores. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 338–349. Luxembourg, Luxembourg. https://doi.org/10.1109/DSN.2018.00044
    4. Akeela, R., & Dezfouli, B. (2018). Software-defined Radios: Architecture, state-of-the-art, and challenges. Computer Communications, 128(June), 106–125. https://doi.org/10.1016/j.comcom.2018.07.012
    5. Amor, H. B., Bernier, C., & Prikryl, Z. (2022). A RISC-V ISA Extension for Ultra-Low Power IoT Wireless Signal Processing. IEEE Transactions on Computers, 71(4), 766–778. https://doi.org/10.1109/TC.2021.3063027
    6. Antonio, R. A., Mari, R., Costa, D., Ison, A. R., Lim, W. K., Pajado, R. A., Roque, D. B., Yutuc, R., Densing, C. V., Leon, M. T. De, Rosales, M., & Alarcon, L. (2017). Implementation of Dynamic Voltage Frequency Scaling on a Processor for Wireless Sensing Applications. Proc. of the 2017 IEEE Region 10 Conference (TENCON), Malaysia, November 5-8, 1, 2955–2960.
    7. Appukuttan, A., Thomas, E., Nair, H. R., Hemanth, S., Dhanaraj, K. J., & Azeez, M. A. (2022). In-Memory Computing Based Hardware Accelerator Module for Deep Neural Networks. INDICON 2022 - 2022 IEEE 19th India Council International Conference, 1–6. Kochi, India. https://doi.org/10.1109/INDICON56171.2022.10040126
    8. Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010
    9. Balasubramanian, S., Creech, G., Wilson, J., Yoder, S. M., McCue, J. J., Verhelst, M., & Khalil, W. (2011). Systematic analysis of interleaved digital-to-analog converters. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(12), 882–886. https://doi.org/10.1109/TCSII.2011.2172526
    10. Baliga, J., Ayre, R. W. A., Hinton, K., & Tucker, R. S. (2011). Green cloud computing: Balancing energy in processing, storage, and transport. Proceedings of the IEEE, 99(1), 149–167. https://doi.org/10.1109/JPROC.2010.2060451
    11. Becker, J., Hübner, M., Hettich, G., Constapel, R., Eisenmann, J., & Luka, J. (2007). Dynamic and partial FPGA exploitation. Proceedings of the IEEE, 95(2), 438–452. Cancun, Mexico. https://doi.org/10.1109/JPROC.2006.888404
    12. Benini, L., Bogliolo, A., & De Micheli, G. (2000). A survey of design techniques for system-level dynamic power management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(3), 299–316. https://doi.org/10.1109/92.845896
    13. Bezati, E., Casale-Brunet, S., Mattavelli, M., & Janneck, J. W. (2017). Clock-gating of streaming applications for energy efficient implementations on FPGAS. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(4), 699–703. https://doi.org/10.1109/TCAD.2016.2597215
    14. Brandalero, M., Carro, L., Carlos, A., Beck, S., Shafique, M., & Member, S. (2021). Multi-Target Adaptive Reconfigurable Acceleration for Low-Power IoT Processing. IEEE Transactions on Computers, 70(1), 83–98.
    15. Brandt, J., & Schneider, K. (2010). The Model Checking View to Clock Gating and Operand Isolation. 10th International Conference on Application of Concurrency to System Design, 181–190. Braga, Portugal. https://doi.org/10.1109/ACSD.2010.22
    16. Cerchecci, M., Luti, F., Mecocci, A., Parrino, S., & Peruzzi, G. (2018). A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context. Sensors, 18(1282), 1–27. https://doi.org/10.3390/s18041282
    17. Chen, J. Y., Jone, W. B., Wang, J. S., Lu, H., & Chen, T. F. (1999). Segmented Bus Design for Low-Power Systems. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 7(1), 25–29.
    18. Chen, Y., Lu, S., Kim, H. S., Blaauw, D., Dreslinski, R. G., & Mudge, T. (2016). A low power software-defined-radio baseband processor for the Internet of Things. Proceedings - International Symposium on High-Performance Computer Architecture, 2016-April, 40–51. Barcelona, Spain. https://doi.org/10.1109/HPCA.2016.7446052
    19. Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., & Shen, X. S. (2021). TOFFEE : Task Offloading and Frequency Scaling for Energy Efficiency of Mobile Devices in Mobile Edge Computing. IEEE Transactions on Cloud Computing, 9(4), 1634–1644.
    20. Choudhary, P., & Marculescu, D. (2009). Power Management of Voltage / Frequency Island-Based Systems Using Hardware-Based Methods. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 17(3), 427–438.
    21. Crenne, J., Vaslin, R., Gogniat, G., Diguet, J. P., Tessier, R., & Unnikrishnan, D. (2013). Configurable memory security in embedded systems. Transactions on Embedded Computing Systems, 12(3). https://doi.org/10.1145/2442116.2442121
    22. Dinis, D. C., Cordeiro, R. F., Oliveira, A. S. R., Vieira, J., & Silva, T. O. (2018). A Fully Parallel Architecture for Designing Frequency-Agile and Real-Time Reconfigurable FPGA-Based RF Digital Transmitters. IEEE Transactions on Microwave Theory and Techniques, 66(3), 1489–1499. https://doi.org/10.1109/TMTT.2017.2764451
    23. Dinis, D. C., Ma, R., Shinjo, S., Yamanaka, K., Teo, K. H., Orlik, P. V., Oliveira, A. S. R., & Vieira, J. (2018). A Real-Time Architecture for Agile and FPGA-Based Concurrent Triple-Band All-Digital RF Transmission. IEEE Transactions on Microwave Theory and Techniques, 66(11), 4955–4966. https://doi.org/10.1109/TMTT.2018.2860972
    24. Ellamei, M. H., & Abd El Ghany, M. A. (2022). Hardware Acceleration of a Fully Parallel Viterbi Decoder Architecture for Narrow Band IOT. ICECS 2022 - 29th IEEE International Conference on Electronics, Circuits and Systems, Proceedings, 1–4. Glasgow, United Kingdom. https://doi.org/10.1109/ICECS202256217.2022.9970985
    25. Fink, G. A., Zarzhitsky, Di. V., Carroll, T. E., & Farquhar, E. D. (2015). Security and privacy grand challenges for the Internet of Things. 2015 International Conference on Collaboration Technologies and Systems, CTS 2015, 27–34. Atlanta, GA, USA. https://doi.org/10.1109/CTS.2015.7210391
    26. Folegnani, D., & González, A. (2001). Energy-effective issue logic. Conference Proceedings - Annual International Symposium on Computer Architecture, ISCA, 00(C), 230–239. Gothenburg, Sweden. https://doi.org/10.1145/379240.379266
    27. Gao, N., Xu, C., Peng, X., Luo, H., Wu, W., & Xie, G. (2020). Energy-Efficient Scheduling Optimization for Parallel Applications on Heterogeneous Distributed Systems. Journal of Circuits, Systems and Computers, 29(13), 3426–3442. https://doi.org/10.1142/S0218126620502035
    28. Yeap, G. (1998). Practical Low Power Digital VLSI Design. Springer. https://doi.org/10.1007/978-1-4615-6065-4
    29. Gebremichael, T., Ledwaba, L. P. I., Eldefrawy, M. H., Hancke, G. P., Pereira, N., Gidlund, M., & Akerberg, J. (2020). Security and Privacy in the Industrial Internet of Things: Current Standards and Future Challenges. IEEE Access, 8, 152351–152366. https://doi.org/10.1109/ACCESS.2020.3016937
    30. Ghannouchi, F. M. (2010). Power amplifier and transmitter architectures for software defined radio systems. IEEE Circuits and Systems Magazine, 10(4), 56–63. https://doi.org/10.1109/MCAS.2010.938639
    31. Gluzer, D., & Wimer, S. (2017). Probability-Driven Multibit Flip-Flop Integration with Clock Gating. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(3), 1173–1177. https://doi.org/10.1109/TVLSI.2016.2614004
    32. Gopika Rajan, J., & Ganesh, R. S. (2022). Hardware Based Data Security Techniques in IOT: A Review. 3rd International Conference on Smart Electronics and Communication, ICOSEC 2022 - Proceedings, Icosec, 408–413. Trichy, India. https://doi.org/10.1109/ICOSEC54921.2022.9952021
    33. Hajimiri, H., & Mishra, P. (2012). Intra-task dynamic cache reconfiguration. Proceedings of the IEEE International Conference on VLSI Design, 430–435. Hyderabad, India. https://doi.org/10.1109/VLSID.2012.109
    34. He, P., & Tu, Y. (2023). Hardware-Implemented Lightweight Accelerator for Large Integer Polynomial Multiplication. IEEE Computer Architecture Letters, 1, 1–4. https://doi.org/10.1109/LCA.2023.3274931
    35. Heyrman, K., Papanikolaou, A., Catthoor, F., & Veelaert, P. (2010). Control for Power Gating of Wires. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 18(9), 1287–1300.
    36. Hoang, V. T., Julien, N., & Berruet, P. (2013). Increasing the autonomy of wireless sensor node by effective use of both DPM and DVFS methods. 2013 IEEE Faible Tension Faible Consommation, FTFC 2013. Paris, France. https://doi.org/10.1109/FTFC.2013.6577766
    37. Hou, S., Ni, W., Zhao, K., Cheng, B., Zhao, S., Wan, Z., Liu, X., & Chen, S. (2023). Fine-Grained Online Energy Management of Edge Data Centers Using Per-Core Power Gating and Dynamic Voltage and Frequency Scaling. IEEE Transactions on Sustainable Computing, 8(3), 1–14. https://doi.org/10.1109/TSUSC.2023.3250487
    38. Biggs, J., Marschner, E., Lee, J., Daniels, J., Allen, D., Bourstein, I., Chang, S., Cheng, D., Chin C., DasGupta, S., Dobre, S., Durnan, S., Holehouse C., Honnavara-Prasad, S., Jen, F., Jordan, T., Just, K., Kehoe, J., Koster, R., Lagerquist, R., McIlwain, L., Mills, D., Pangrle, B., Rich, A., Richardson, J., Sproch, J., Srivastava, A., Subbarao, P., Venkatesh, V., Wang, Q., Worthington J., & Yu, L. (2003). IEEE Standard for Design and Verification of Low-Power Integrated Circuits. In 61010-1 © Iec:2001 (Vol. 2003).
    39. Izosimov, V., Pop, P., Eles, P., & Peng, Z. (2005). Design optimization of time- and cost-constrained fault-tolerant distributed embedded systems. Proceedings -Design, Automation and Test in Europe, DATE ’05, II, 864–869. Munich, Germany. https://doi.org/10.1109/DATE.2005.116
    40. Jankowski, M., Gunduz, D., & Mikolajczyk, K. (2020). Deep Joint Source-Channel Coding for Wireless Image Retrieval. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2020-May, 5070–5074. Barcelona, Spain. https://doi.org/10.1109/ICASSP40776.2020.9054078
    41. Jia, G., & Han, G. (2019). Coordinate Memory Deduplication and Partition for Improving Performance in Cloud Computing. IEEE Transaction on Cloud Computing, 7(2), 357–368.
    42. Jiang, T., Zhang, Q., Hou, R., Chai, L., Mckee, S. A., Jia, Z., & Sun, N. (2014). Understanding the Behavior of In-Memory Computing Workloads. 2014 IEEE International Symposium on Workload Characterization (IISWC), 22–30. Raleigh, NC, USA. https://doi.org/10.1109/IISWC.2014.6983036
    43. Jose Nunez-Yanez. (2017). Adaptive voltage scaling in a heterogeneous FPGA device with memory and logic in-situ detectors . Microprocessors and Microsystems, 51, 227–238.
    44. Kapoor, B., Hemmady, S., Verma, S., Roy, K., & D’Abreu, M. A. (2009). Impact of SoC power management techniques on verification and testing. Proceedings of the 10th International Symposium on Quality Electronic Design, ISQED 2009, 692–695. San Jose, CA, USA. https://doi.org/10.1109/ISQED.2009.4810377
    45. Khanna, N., & Mishra, D. K. (2018). Clock Gated 16-Bits ALU Design & Implementation on FPGA. 2018 4th International Conference for Convergence in Technology (I2CT), 1–5. Mangalore, India.
    46. Kiat, W. P., Mok, K. M., Lee, W. K., Goh, H. G., & Achar, R. (2020). An energy efficient FPGA partial reconfiguration based micro-architectural technique for IoT applications. Microprocessors and Microsystems, 73, 102966. https://doi.org/10.1016/j.micpro.2019.102966
    47. Kim, T., Park, H., & Kim, T. (2021). Allocation of Always-On State Retention Storage for Power Gated Circuits - Steady-State- Driven Approach. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(3), 499–511. https://doi.org/10.1109/TVLSI.2020.3047056
    48. Ko, Y. (2022). Survey of Software-Implemented Soft Error Protection. Electronics (Switzerland), 11(3). https://doi.org/10.3390/electronics11030456
    49. Kocher, P., Lee, R., McGraw, G., Raghunathan, A., & Ravi, S. (2004). Security as a new dimension in embedded system design. Proceedings - Design Automation Conference, 753–760. San Diego, CA, USA. https://doi.org/10.1145/996566.996771
    50. Kumar, R., Farkas, K., Jouppi, N. P., & Ranganathan, P. (2003). Processor power reduction via single-isa heterogeneous multi-core architectures. IEEE Computer Architecture Letters, 2(1), 2. https://doi.org/10.1109/L-CA.2003.6
    51. Kwok, T. T. O., & Kwok, Y. K. (2006). Computation and energy efficient image processing in wireless sensor networks based on reconfigurable computing. Proceedings of the International Conference on Parallel Processing Workshops, 43–50. Columbus, OH, USA. https://doi.org/10.1109/ICPPW.2006.30
    52. Lee, J. S., Choi, P., & Kim, D. K. (2022). Lightweight and Low-Latency AES Accelerator Using Shared SRAM. IEEE Access, 10, 30457–30464. https://doi.org/10.1109/ACCESS.2022.3156291
    53. Lee, W. Y. (2012). Energy-Efficient Scheduling of Periodic Real-Time Tasks on Lightly Loaded Multicore Processors. IEEE Transaction on Parallel and Distributed Systems, 23(3), 530–537.
    54. Li, S., Li, S., Chen, M., Song, C., & Lu, L. (2023). Frequency Scaling Meets Intermittency: Optimizing Task Rate for RFID-Scale Computing Devices. IEEE Transactions on Mobile Computing, 1–12. https://doi.org/10.1109/tmc.2023.3239515
    55. Liu, S., Lu, J., Wu, Q., & Qiu, Q. (2012). Harvesting-Aware Power Management for Real-Time Systems with Renewable Energy. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(8), 1473–1486. https://doi.org/10.1109/TVLSI.2011.2159820
    56. Liu, Y., Wang, Z., Lee, A., Su, F., Lo, C. P., Yuan, Z., Lin, C. C., Wei, Q., Wang, Y., King, Y. C., Lin, C. J., Khalili, P., Wang, K. L., Chang, M. F., & Yang, H. (2016). A 65nm ReRAM-enabled nonvolatile processor with 6× reduction in restore time and 4× higher clock frequency using adaptive data retention and self-write-termination nonvolatile logic. Digest of Technical Papers - IEEE International Solid-State Circuits Conference, 59, 84–86. San Francisco, CA, USA. https://doi.org/10.1109/ISSCC.2016.7417918
    57. Luis Nunez-Yanez, J., Hosseinabady, M., & Beldachi, A. (2016). Energy Optimization in Commercial FPGAs with Voltage, Frequency and Logic Scaling. IEEE Transactions on Computers, 65(5), 1484–1493. https://doi.org/10.1109/TC.2015.2435771
    58. Luo, Y., Pu, L., & Liu, C. H. (2022). CPU Frequency Scaling Optimization in Sustainable Edge Computing. IEEE Transactions on Sustainable Computing, 1–14. https://doi.org/10.1109/TSUSC.2022.3217970
    59. Mach, S., Schuiki, F., Zaruba, F., & Benini, L. (2021). FPnew: An Open-Source Multiformat Floating-Point Unit Architecture for Energy-Proportional Transprecision Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(4), 774–787. https://doi.org/10.1109/TVLSI.2020.3044752
    60. Macko, D. (2015). Contribution to System-Level Design and Verification of Low-Power Digital Systems. Information Sciences and Technologies Bulletin of the ACM, 7(3–4), 10–17.
    61. Mai, S., Zhang, C., Zhao, Y., Chao, J., & Wang, Z. (2007). An Application-Specific Memory Partitioning Method for Low Power. 2007 7th International Conference on ASIC, 221–224. Guilin, China.
    62. Mendez, T. (2022). Performance Evaluation of Fault-Tolerant Approximate Adder. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS), April, 1–5. Coimbatore, India. https://doi.org/10.1109/ICDCS54290.2022.9780792
    63. Mhambrey, S. S., Maurya, S. K., & Clark, L. T. (2013). Low complexity out-of-order issue logic using static circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(2), 380–384. https://doi.org/10.1109/TVLSI.2012.2184310
    64. Monga, K., Behera, S., Chaturvedi, N., & Gurunarayanan, S. (2022). Design of In-Memory Computing Enabled SRAM Macro. INDICON 2022 - 2022 IEEE 19th India Council International Conference, 1–4. Kochi, India. https://doi.org/10.1109/INDICON56171.2022.10039958
    65. Noor, T., & Salman, E. (2019). A novel glitch-free integrated clock gating cell for high reliability. Proceedings - IEEE International Symposium on Circuits and Systems, 2019-May. 77-78. Sapporo, Japan. https://doi.org/10.1109/ISCAS.2019.8702507
    66. Paludo, R., & Sousa, L. (2022). NTT Architecture for a Linux-Ready RISC-V Fully-Homomorphic Encryption Accelerator. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(7), 2669–2682. https://doi.org/10.1109/TCSI.2022.3166550
    67. Patel, S., & Hwu, W. M. W. (2008). Accelerator architectures. IEEE Micro, 28(4), 4–12. https://doi.org/10.1109/MM.2008.50
    68. Patil, V., Raveendran, A., Sobha, P. M., Selvakumar, A. D., & Vivian, D. (2015). Out of order floating point coprocessor for RISC v ISA. 19th International Symposium on VLSI Design and Test, VDAT 2015 - Proceedings, 1–7. Ahmedabad, India. https://doi.org/10.1109/ISVDAT.2015.7208116
    69. Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. IEEE Communications Surveys and Tutorials, 16(1), 414–454. https://doi.org/10.1109/SURV.2013.042313.00197
    70. Pons, J., Dehaese, N., Bourdel, S., Gaubert, J., & Paille, B. (2016). RF Power Gating : A Low-Power Technique for Adaptive Radios. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(4), 1377–1390.
    71. Poorani, A., Anuradha, B., & Vivekanadhan, C. (2014). An Effectual Elucidation of Task Scheduling and Memory Partitioning for MPSoC. 2014 IEEE 8th Proceedings International Conference on Intelligent Systems and Control (ISCO), 213–217. Coimbatore, India.
    72. Raghunathan, V., Ganeriwal, S., Srivastava, M., & Schurgers, C. (2004). Energy Efficient Wireless Packet Scheduling and Fair Queuing. ACM Transactions on Embedded Computing Systems, 3(1), 3–23. https://doi.org/10.1145/972627.972629
    73. Moon, H., Cho, J., Park, & D. (2019). Reconfigurable Fault-Safe Processor Platform Based on RISC-V for Large-Scaled IoT-Driven Applications. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress, 627–632. Fukuoka, Japan. https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00119
    74. Regazzoni, F., & Ienne, P. (2016). Instruction Set Extensions for secure applications. Proceedings of the 2016 Design, Automation and Test in Europe Conference and Exhibition, DATE 2016, 1529–1534. Dresden, Germany. https://doi.org/10.3850/9783981537079_1009
    75. Santos, P. S., Almeida, L. F., Cordeiro, R. F., Oliveira, A. S. R., Monteiro, P. P., & Carvalho, and N. B. (2023). Scalable Resource Optimized LUT-Based All-Digital Transmitter. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, 1–9. https://doi.org/10.1109/TCSI.2023.3274432
    76. See, J. C., Mok, K. M., Lee, W. K., & Goh, H. G. (2020). RISC32-E: Field programmable gate array based sensor node with queue system to support fast encryption in Industrial Internet of Things applications. International Journal of Circuit Theory and Applications, 48(8), 1209–1226. https://doi.org/10.1002/cta.2797
    77. Shuangming, Y., Peng, F., & Nanjian, W. (2016). A low power non-volatile LR-WPAN baseband processor with wake-up identification receiver. China Communications, 13(1), 33–46. https://doi.org/10.1109/CC.2016.7405702
    78. Shukla, S., & Ray, K. C. (2022). A Low-Overhead Reconfigurable RISC-V Quad-Core Processor Architecture for Fault-Tolerant Applications. IEEE Access, 10, 44136–44146. https://doi.org/10.1109/ACCESS.2022.3169495
    79. Si, Q., Rashid, I., & Carrion Schafer, B. (2021). Micro-architecture Tuning for Dynamic Frequency Scaling in Coarse-Grain Runtime Reconfigurable Arrays with Adaptive Clock Domain Support. Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI, 2021-July, 212–217. Tampa, FL, USA. https://doi.org/10.1109/ISVLSI51109.2021.00047
    80. Siddhu, L., Mishra, A., & Singh, V. (2014). Operand Isolation Circuits with Reduced Overhead for Low Power Data-Path Design. 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems Operand, 483–488. Mumbai, India. https://doi.org/10.1109/VLSID.2014.90
    81. Škuta, M., Macko, D., & Jelemenská, K. (2020). Automation of dynamic power management in FPGA-based energy-constrained systems. IEEE Access, 8, 165894–165903. https://doi.org/10.1109/ACCESS.2020.3022955
    82. Yang, Y., & Diao, W. (2020). An Energy-efficient Frame-based Task Scheduling Algorithm for Heterogeneous. 2020 International Wireless Communications and Mobile Computing (IWCMC), 1404–1409. Limassol, Cyprus.
    83. Tan, S., Yin, Y., Jiang, H., & Wang, Z. (2020). A 0 . 7-V Clock-gating Cell with Power Gating Technology and 1 . 56-pA Sleep. 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications, 77–78. Nanjing, China.
    84. Srinivasan, N., Prakash, N. S., Shalakha D., Sivaranjani D., Sri Lakshmi G., S., & Sundari, B. B. T. (2015). Power Reduction by Clock Gating Technique. Procedia Technology, 21, 631–635. https://doi.org/10.1016/j.protcy.2015.10.075
    85. Srivastava, N., & Manohar, R. (2019). Operation-Dependent Frequency Scaling Using Desynchronization. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 27(4), 799–809.
    86. Sterpone, L., Carro, L., Matos, D., Wong, S., & Fakhar, F. (2011). A New Reconfigurable Clock-Gating Technique for Low Power SRAM-based FPGAs. 2011 Design, Automation & Test in Europe Design, Automation & Test in Europe Conference & Exhibition (DATE). 1-6. Grenoble, France.
    87. Strobel, M., Eggenberger, M., & Radetzki, M. (2017). Low power memory allocation and mapping for area-constrained systems-on-chips. EURASIP Journal on Embedded Systems, 2017(2), 1–12. https://doi.org/10.1186/s13639-016-0039-5
    88. Su, J., Yang, F., Zeng, X., Zhou, D., & Chen, J. (2017). Efficient Memory Partitioning for Parallel Data Access in FPGA via Data Reuse. IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, 36(10), 1674–1687.
    89. Tamimi, S., Ebrahimi, Z., Khaleghi, B., Asadi, H., & Member, S. (2019). An Efficient SRAM-Based Reconfigurable Architecture for Embedded Processors. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 38(3), 466–479.
    90. Tan, B. L., Mok, K. M., Chang, J. J., Lee, W. K., & Hwang, S. O. (2022). RISC32-LP: Low-Power FPGA-Based IoT Sensor Nodes with Energy Reduction Program Analyzer. IEEE Internet of Things Journal, 9(6), 4214–4228. https://doi.org/10.1109/JIOT.2021.3103035
    91. Thakor, V. A., Razzaque, M. A., & Khandaker, M. R. A. (2021). Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices: A Review, Comparison and Research Opportunities. IEEE Access, 9, 28177–28193. https://doi.org/10.1109/ACCESS.2021.3052867
    92. Tigadi, A. S. (2023). Low Power Memory Management Techniques for IoT Applications. International Journal of Research and Analytical Reviews, 10(April), 456–471.
    93. Toms, W., Navaridas, J., & Luj, M. (2017). Cyclic Power-Gating as an Alternative to Voltage and Frequency Scaling n. IEEE Computer Architecture Letters, 15(2), 77–80. https://doi.org/10.1109/LCA.2015.2478784
    94. Tong, Y., Zhang, W., Ma, Y., Liu, Y., Liang, Y., Zhang, T., & Luo, H. (2017). Compiler-Guided Parallelism Adaption Based on Application Partition for Power-Gated ILP Processor. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 25(4), 1329–1341.
    95. Tsai, K. L., Leu, F. Y., You, I., Chang, S. W., Hu, S. J., & Park, H. (2019). Low-Power AES Data Encryption Architecture for a LoRaWAN. IEEE Access, 7, 146348–146357. https://doi.org/10.1109/ACCESS.2019.2941972
    96. Urbina, M., Acosta, T., Lazaro, J., Astarloa, A., & Bidarte, U. (2019). Smart Sensor: SoC Architecture for the Industrial Internet of Things. IEEE Internet of Things Journal, 6(4), 6567–6577. https://doi.org/10.1109/JIOT.2019.2908264
    97. Wang, H., Papanikolaou, A., Miranda, M., & Catthoort, F. (2004). A global bus power optimization methodology for physical design of memory dominated systems by coupling bus segmentation and activity driven block placement. ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753), 759–761. Yokohama, Japan.
    98. Wang, Z., Liu, Y., & Zhang, D. (2015). An Energy-Efficient Heterogeneous Dual-Core Processor for Internet of Things. 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2301–2304. Lisbon, Portugal. https://doi.org/10.1109/ISCAS.2015.7169143
    99. Wu, Y., Chen, Y. J., Chen, T. S., Guo, Q., & Zhang, L. (2014). An elastic architecture adaptable to various application scenarios. Journal of Computer Science and Technology, 29(2), 227–238. https://doi.org/10.1007/s11390-014-1425-x
    100. Wu, Y., & Sandy Thomson, Han Sun, David Krause, Song Yu, and G. K. (2015). Free Razor: A Novel Voltage Scaling Low-Power Technique for Large SoC Designs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(11), 2431–2437. https://doi.org/10.1109/TVLSI.2014.2377573
    101. Yang, S., Shao, L., Huang, J., & Zou, W. (2023). Design and Implementation of Low-Power IoT RISC-V Processor with Hybrid Encryption Accelerator. Electronics (Switzerland), 12(20). https://doi.org/10.3390/electronics12204222
    102. Yang, S. Y., Yang, J., Huang, L. Y., Bai, J. L., & Zhang, X. Y. (2022). A Dual-Band RF All-Digital Transmitter Based on MPWM Encoding. IEEE Transactions on Microwave Theory and Techniques, 70(3), 1745–1756. https://doi.org/10.1109/TMTT.2021.3135858
    103. Yu, S., He, Y., Jia, H., Sun, W., Zhou, M., Lei, L., Zhao, W., Ma, G., Yang, H., & Liu, Y. (2023). A Heterogeneous Microprocessor Based on All-Digital Compute-in-Memory for End-to-End AIoT Inference. IEEE Transactions on Circuits and Systems II: Express Briefs, PP(X), 1. https://doi.org/10.1109/TCSII.2023.3249245
    104. Zhang, C., Li, S., Song, Y., Meng, Q., Lu, L., Zhu, H., & Wang, X. (2024). A Lightweight and Chip-Level Reconfigurable Architecture for Next-Generation IoT End Devices. IEEE Transactions on Computers, 73(3), 747–763. https://doi.org/10.1109/TC.2023.3343094
    105. Zhang, C., Vahid, F., & Najjar, W. (2003). A highly configurable cache architecture for embedded systems. Conference Proceedings - Annual International Symposium on Computer Architecture, ISCA, 136–146. San Diego, CA, USA. https://doi.org/10.1145/859634.859635
    106. Zhang, J., Zhao, J., Huang, H., Ye, N., Giddings, R. P., Li, Z., Qin, D., Zhang, Q., & Tang, J. M. (2020). A Clock-Gating-Based Energy-Efficient Scheme for ONUs in Real-Time IMDD OFDM-PONs. Journal of Lightwave Technology, 38(14), 3573–3583.
    107. Zhang, W., Zhang, Y., & Zhao, K. (2021). Design and Verification of Three-stage Pipeline CPU Based on RISC-V Architecture. Proceedings of 2021 5th Asian Conference on Artificial Intelligence Technology, ACAIT 2021, 697–703. Haikou, China. https://doi.org/10.1109/ACAIT53529.2021.9731161
    108. Zhao, X., Sadhu, V., & Pompili, D. (2017). Analog Signal Compression and Multiplexing Techniques for Healthcare Internet of Things. Proceedings - 14th IEEE International Conference on Mobile Ad Hoc and Sensor Systems, MASS 2017, 398–406. Orlando, FL, USA. https://doi.org/10.1109/MASS.2017.62
    109. Zhuang, R., DeLoach, S. A., & Ou, X. (2014). Towards a theory of moving target defense. Proceedings of the ACM Conference on Computer and Communications Security, 2014-Novem(November), 31–40. Ottawa , ON , Canada. https://doi.org/10.1145/2663474.2663479

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Barge, S., & Gerardine, M. (2024). Low power techniques for internet of things implementation: A review. Multidisciplinary Reviews, 7(12), 2024306. https://doi.org/10.31893/multirev.2024306
  • Article viewed - 268
  • PDF downloaded - 532