• Abstract

    This study aims to comprehensively understand qualitative and quantitative information about the current trends in VIs. It examines 106 articles published in Scopus-indexed journals between 2020 and 2024. The analysis was done with the help of Biblioshiny, an R-developed online application from the Bibliometrix package, and VOSviewer software for analytical and visualization purposes. This study was conducted using the SPAR-4-SLR protocol. The findings showed that recent years have been more productive, and many authors have demonstrated their interest in studying the VIs. Recent trends are social media, virtual reality, marketing, social networking, etc. The study employs a systematic review and bibliometric analysis to extract valuable insights from the extensive body of literature. These insights suggested several areas for future research, providing a roadmap for future researchers to proceed with their research in this area. The comprehensive scientific cartography of the area has yet to be presented; therefore, this study aims to synthesize the current knowledge frameworks within the field and determine the dominant research patterns in the specific area of investigation. 

     

  • References

    1. Allal‐Chérif, O., Puertas, R., & Carracedo, P. (2024). Intelligent influencer marketing: how AI-powered virtual influencers outperform human influencers. Technological Forecasting & Social Change/Technological Forecasting and Social Change, 200, 123113. https://doi.org/10.1016/j.techfore.2023.123113
    2. Arsenyan, J., & Mirowska, A. (2021). Almost human? A comparative case study on the social media presence of virtual influencers. International Journal of Human-computer Studies, 155, 102694. https://doi.org/10.1016/j.ijhcs.2021.102694
    3. Barth, M., Haustein, S., & Scheidt, B. (2014). The life sciences in German– Chinese cooperation: an institutional-level co-publication analysis. Scientometrics, 98, 99-117. https://doi.org/10.1007/s11192-013-1147-9
    4. Belanche, D., Casaló, L. V., & Flavián, M. (2024). Human versus virtual influences, a comparative study. Journal of Business Research, 173, 114493. https://doi.org/10.1016/j.jbusres.2023.114493
    5. Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to coword analysis. Social science information, 22(2), 191-235. https://doi.org/10.1177/053901883022002003
    6. Casaló, L. V., Flavián, C., & Ibáñez‐Sánchez, S. (2020). Influencers on Instagram: Antecedents and consequences of opinion leadership. Journal of Business Research, 117, 510–519. https://doi.org/10.1016/j.jbusres.2018.07.005
    7. Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for information Science and Technology, 62(7), 1382-1402. https://doi.org/10.1002/asi.21525
    8. Comerio, N., & Strozzi, F. (2019). Tourism and its economic impact: A literature review using bibliometric tools. Tourism economics, 25(1), 109-131. https://doi.org/10.1177/1354816618793762
    9. Conti, M., Gathani, J., & Tricomi, P. P. (2022). Virtual influencers in online social media. IEEE Communications Magazine, 60(8), 86–91. https://doi.org/10.1109/mcom.001.2100786
    10. Silva, D. B. M. J., Delfino, D. O. R. L., Cerqueira, A., K., & Campos, D. O. P. (2022). Avatar marketing: a study on the engagement and authenticity of virtual influencers on Instagram. Social Network Analysis and Mining, 12(1), 130. https://doi.org/10.1007/s13278-022-00966-w
    11. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
    12. Eck, V. N. J., & Waltman, L. (2007). VOS: A new method for visualizing similarities between objects. In Advances in Data Analysis: Proceedings of the 30th Annual Conference of the Gesellschaft für Klassifikation eV, Freie Universität Berlin, March 8–10, 2006 (p. 299-306). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-70981-7_34
    13. Eck, V. N. J., Waltman, L., Dekker, R., & Berg, V. D. J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405-2416. https://doi.org/10.1002/asi.21421
    14. Ferraro, C., Sands, S., Zubcevic-Basic, N., & Campbell, C. (2024). Diversity in the digital age: How consumers respond to diverse virtual influencers. International Journal of Advertising, 1–23. https://doi.org/10.1080/02650487.2023.2300927
    15. Franke, C., Groeppel‐Klein, A., & Müller, K. (2023). Consumers’ responses to virtual influencers as advertising endorsers: novel and effective or uncanny and deceiving? Journal of Advertising, 52(4), 523–539. https://doi.org/10.1080/00913367.2022.2154721
    16. Garg, M., Bakshi, A. (2024). Exploring the impact of beauty vloggers’ credible attributes, parasocial interaction, and trust on consumer purchase intention in influencer marketing. Humanities & Social Sciences Communications, 11, 235. https://doi.org/10.1057/s41599-024-02760-9
    17. Haenlein, M., Anadol, E., Farnsworth, T., Hugo, H., Hunichen, J., & Welte, D. (2020). Navigating the new era of influencer marketing: How to be successful on Instagram, TikTok, & Co. California management review, 63(1), 5-25. https://doi.org/10.1177/0008125620958166
    18. Ham, J., Li, S., Shah, P., & Eastin, M. S. (2023). The “Mixed” Reality of Virtual Brand Endorsers: Understanding the Effect of Brand Engagement and Social Cues on Technological Perceptions and Advertising Effectiveness. Journal of Interactive Advertising, 23(2), 98–113. https://doi.org/10.1080/15252019.2023.2185557
    19. Ham, J., Li, S., Looi, J., & Eastin, M. S. (2024). Virtual humans as social actors: Investigating user perceptions of virtual humans’ emotional expression on social media. Computers in Human Behavior, 155, 108161. https://doi.org/10.1016/j.chb.2024.108161
    20. Hedhli, K. E., Zourrig, H., Khateeb, A. A., & Alnawas, I. (2023). Stereotyping human-like virtual influencers in retailing: Does warmth prevail over competence? Journal of Retailing and Consumer Services, 75, 103459. https://doi.org/10.1016/j.jretconser.2023.103459
    21. Hepp, A. (2019). Katz/Lazarsfeld (1955): Personal Influence. In: Holzer, B., Stegbauer, C. (eds) Schlüsselwerke der Netzwerkforschung. Netzwerkforschung (pp.293-296). Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-21742-6_67
    22. Jin, S. A., & Viswanathan, V. (2024). “Threatened and empty selves following AI-based virtual influencers”: comparison between followers and non-followers of virtual influencers in AI-driven digital marketing. AI & Society. https://doi.org/10.1007/s00146-023-01832-9
    23. Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10-25. https://doi.org/10.1002/asi.5090140103
    24. Kim, H., & Park, M. (2023). Virtual influencers’ attractiveness effect on purchase intention: A moderated mediation model of the Product–Endorser fit with the brand. Computers in Human Behavior, 143, 107703. https://doi.org/10.1016/j.chb.2023.107703
    25. Kim, H., & Park, M. (2024). When digital celebrity talks to you: How human-like virtual influencers satisfy consumer’s experience through social presence on social media endorsements. Journal of Retailing and Consumer Services, 76, 103581. https://doi.org/10.1016/j.jretconser.2023.103581
    26. Kolle, S. R. (2017). Global research on information literacy: A bibliometric analysis from 2005 to 2014. The Electronic Library, 35(2), 283-298. https://doi.org/10.1108/EL-08-2015-0160
    27. Lee, Y., & Yuan, C. W. (2023). I’m not a puppet, I’m a real boy! Gender presentations by virtual influencers and how they are received. Computers in Human Behavior, 149, 107927. https://doi.org/10.1016/j.chb.2023.107927
    28. Li, S., Ham, J., & Eastin, M. S. (2024). Social media users’ affective, attitudinal, and behavioral responses to virtual human emotions. Telematics and Informatics, 87, 102084. https://doi.org/10.1016/j.tele.2023.102084
    29. Lou, C., Kiew, S. T. J., Chen, T., Lee, T. Y. M., Ong, J. E. C., & Phua, Z. (2022). Authentically fake? How consumers respond to the influence of virtual influencers. Journal of Advertising, 52(4), 540–557. https://doi.org/10.1080/00913367.2022.2149641
    30. Mirowska, A., & Arsenyam, J. (2023). Sweet escape: The role of empathy in social media engagement with human versus virtual influencers. International Journal of Human-computer Studies, 174, 103008. https://doi.org/10.1016/j.ijhcs.2023.103008
    31. Moustakas, E., Lamba, N. Mahmoud, D. & Ranganathan, C. (2020). Blurring lines between fiction and reality: Perspectives of experts on marketing effectiveness of virtual influencers. In Proceedings of the International Conference on Cyber Security and Protection of Digital Services (Cyber Security) (pp. 1-6). Dublin, Ireland. doi: 10.1109/CyberSecurity49315.2020.9138861.
    32. Ozdemir, O., Kolfal, B., Messinger, P. R., & Rizvi, S. (2023). Human or virtual: How influencer type shapes brand attitudes. Computers in Human Behavior, 145, 107771. https://doi.org/10.1016/j.chb.2023.107771
    33. Paul, J., & Criado, A. R. (2020). The art of writing literature review: What do we know and what do we need to know? International business review, 29(4), 101717. https://doi.org/10.1016/j.ibusrev.2020.101717
    34. Paul, J., Lim, W. M., O’Cass, A., Hao, A. W., & Bresciani, S. (2021). Scientific procedures and rationales for systematic literature reviews (SPAR‐4‐SLR). International Journal of Consumer Studies, 45(4), 1-16. https://doi.org/10.1111/ijcs.12695
    35. Qiu, J. P., Dong, K., & Yu, H. Q. (2014). Comparative study on structure and correlation among author co-occurrence networks in bibliometrics. Scientometrics, 101, 1345-1360. https://doi.org/10.1007/s11192-014-1315-6
    36. Robinson, B. (2020). Towards an Ontology and Ethics of Virtual Influencers. Australasian Journal of Information Systems, 24. https://doi.org/10.3127/ajis.v24i0.2807
    37. Sands, S., Ferraro, C., Demsar, V., & Chandler, G. (2022). False idols: Unpacking the opportunities and challenges of falsity in the context of virtual influencers. Business Horizons, 65(6), 777–788. https://doi.org/10.1016/j.bushor.2022.08.002
    38. Shen, Z. (2024). Shall brands create their own virtual influencers? A comprehensive study of 33 virtual influencers on Instagram. Humanities & Social Sciences Communications, 11(1). https://doi.org/10.1057/s41599-024-02698-y
    39. Stein, J., Breves, P., & Anders, N. (2022). Parasocial interactions with real and virtual influencers: The role of perceived similarity and human-likeness. New Media & Society, 146144482211029. https://doi.org/10.1177/14614448221102900
    40. Surwase, G., Sagar, A., Kademani, B. S., & Bhanumurthy, K. (2011). Co-citation Analysis: An Overview. In Proceedings of Beyond Librarianship: Creativity, Innovation and Discovery (pp. 16-17). Mumbai, India.
    41. Tanwar, A. S., Chaudhry, H., & Srivastava, M. K. (2022). Trends in Influencer Marketing: A Review and Bibliometric analysis. Journal of Interactive Advertising, 22(1), 1–27. https://doi.org/10.1080/15252019.2021.2007822
    42. Trujillo, C. M., & Long, T. M. (2018). Document co-citation analysis to enhance transdisciplinary research. Science advances, 4(1), e1701130. https://doi.org/10.1126/sciadv.1701130
    43. Waaijer, C. J., Bochove, V. C. A., & Eck, V. N. J. (2011). On the map: Nature and Science editorials. Scientometrics, 86(1), 99-112. https://doi.org/10.1007/s11192-010-0205-9
    44. Waltman, L., Eck, V. N. J., & Noyons, E. C. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629-635. https://doi.org/10.1016/j.joi.2010.07.002
    45. Xie-Carson, L., Magor, T., Benckendorff, P., & Hughes, K. (2023). All hype or the real deal? Investigating user engagement with virtual influencers in tourism. Tourism Management, 99, 104779. https://doi.org/10.1016/j.tourman.2023.104779
    46. Yu, C., Dickinger, A., So, K. K. F., & Egger, R. (2024). Artificial intelligence-generated virtual influencer: Examining the effects of emotional display on user engagement. Journal of Retailing and Consumer Services, 76, 103560. https://doi.org/10.1016/j.jretconser.2023.103560
    47. Zanjirchi, S. M., Abrishami, R. M., & Jalilian, N. (2019). Four decades of fuzzy sets theory in operations management: application of life-cycle, bibliometrics and content analysis. Scientometrics, 119, 1289-1309. https://doi.org/10.1007/s11192-019-03077-0

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Lalrengpuii, Srivastava, M. K., & Belavandran, V. (2024). Trends in virtual influencers (VIs): A bibliometric analysis and SPAR-4-SLR protocol. Multidisciplinary Reviews, 7(12), 2024285. https://doi.org/10.31893/multirev.2024285
  • Article viewed - 505
  • PDF downloaded - 271