• Abstract

    This review aims to evaluate the diagnostic performance of magnetic resonance imaging (MRI) with respect to the detection of lung cancer. Many studies have shown that computed tomography (CT) has increased sensitivity and specificity for the treatment of cancer. The major drawback of CT is the radiation dose imparted by it. x. In most advanced scenarios, Positron emission tomography (PET/MRI) is used. Our goal was also to evaluate the reasons for MRI being the choice of modality. The publications considered in the review were obtained from PubMed/MEDLINE, the Cochrane Library and EMBASE. Only studies published in the English language with the subject modality being MRI or PET/MRI were included. Review articles, case reports and conference reports were excluded from the study. A total of 3140 articles were identified, of which 120 publications were considered. All these studies had an overall surface aim to evaluate the diagnostic performance of MRI in detecting lung cancer. By comparing these publications, we can conclude that MRI can be a potential alternative to CT in detecting cancer lesions 3 mm in diameter or greater. Smaller lesions undetected by MRI were found to be benign and stable during follow-up, indicating the use of this technique for acceptable clinical management. Compared with CT, MRI does not provide any added benefits for lung cancer detection. It offered high sensitivity to large nodules of 3 mm or greater. However, CT has emerged to be beneficial in evaluating small nodules. A multisequence MRI protocol may be helpful in diagnosing lung metastasis with a sensitivity comparable to that of CT.

     

  • References

    1. Bauman, G., & Eichinger, M. (2012). Ventilation and perfusion magnetic resonance imaging of the lung. Polish journal of radiology, 77(1), 37–46. https://doi.org/10.12659/pjr.882579
    2. Beets-Tan, R. G. H., Lambregts, D. M. J., Maas, M., Bipat, S., Barbaro, B., Curvo-Semedo, L., Fenlon, H. M., Gollub, M. J., Gourtsoyianni, S., Halligan, S., Hoeffel, C., Kim, S. H., Laghi, A., Maier, A., Rafaelsen, S. R., Stoker, J., Taylor, S. A., Torkzad, M. R., & Blomqvist, L. (2018). Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. European Radiology, 28(4), 1465–1475. https://doi.org/10.1007/s00330-017-5026-2
    3. Biederer, J., Ohno, Y., Hatabu, H., Schiebler, M. L., van Beek, E. J. R., Vogel-Claussen, J., & Kauczor, H. U. (2017). Screening for lung cancer: Does MRI have a role? In European Journal of Radiology (Vol. 86, pp. 353–360). Elsevier Ireland Ltd. https://doi.org/10.1016/j.ejrad.2016.09.016
    4. Boada, F. E., Koesters, T., Block, K. T., & Chandarana, H. (2017). Improved Detection of Small Pulmonary Nodules Through Simultaneous MR/PET Imaging. In Magnetic Resonance Imaging Clinics of North America (Vol. 25, Issue 2, pp. 273–279). W.B. Saunders. https://doi.org/10.1016/j.mric.2016.12.009
    5. Broncano, J., Luna, A., Sánchez-González, J., Alvarez-Kindelan, A., & Bhalla, S. (2016). Functional MR Imaging in Chest Malignancies. In Magnetic Resonance Imaging Clinics of North America (Vol. 24, Issue 1, pp. 135–155). W.B. Saunders. https://doi.org/10.1016/j.mric.2015.08.004
    6. Bruegel, M., Gaa, J., Woertler, K., Ganter, C., Waldt, S., Hillerer, C., & Rummeny, E. J. (2007). MRI of the lung: Value of different turbo spin-echo, single-shot turbo spin-echo, and 3D gradient-echo pulse sequences for the detection of pulmonary metastases. Journal of Magnetic Resonance Imaging, 25(1), 73–81. https://doi.org/10.1002/jmri.20824
    7. Burris, N. S., Johnson, K. M., Larson, P. E. Z., Hope, M. D., Nagle, S. K., Behr, S. C., & Hope, T. A. (2016). Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology, 278(1), 239–246. https://doi.org/10.1148/radiol.2015150489
    8. Cai, J., McLawhorn, R., Altes, T. A., de Lange, E., Read, P. W., Larner, J. M., Benedict, S. H., & Sheng, K. (2011). Helical tomotherapy planning for lung cancer based on ventilation magnetic resonance imaging. Medical Dosimetry, 36(4), 389–396. https://doi.org/10.1016/j.meddos.2010.09.008
    9. Chen, Z. M., Xu, Z., Collins, R., Li, W. X., & Peto, R. (2006). 5 International Agency for Research on Cancer. Smokeless tobacco and tobacco-related nitrosamines. In International Agency for Research on Cancer. Reversal of risk on smoking cessation (Vol. 59, Issue 6). IARC Press. http://www.nap.edu/reportbrief/11340/11340rb.
    10. Dewes, P., Frellesen, C., Al-Butmeh, F., Albrecht, M. H., Scholtz, J. E., Metzger, S. C., Lehnert, T., Vogl, T. J., & Wichmann, J. L. (2016). Comparative evaluation of non-contrast CAIPIRINHA-VIBE 3T-MRI and multidetector CT for detection of pulmonary nodules: In vivo evaluation of diagnostic accuracy and image quality. European Journal of Radiology, 85(1), 193–198. https://doi.org/10.1016/j.ejrad.2015.11.020
    11. Fraioli, F., Screaton, N. J., Janes, S. M., Win, T., Menezes, L., Kayani, I., Syed, R., Zaccagna, F., O’Meara, C., Barnes, A., Bomanji, J. B., Punwani, S., & Groves, A. M. (2015). Non-small-cell lung cancer resectability: diagnostic value of PET/MR. European Journal of Nuclear Medicine and Molecular Imaging, 42(1), 49–55. https://doi.org/10.1007/s00259-014-2873-9
    12. Frericks, B. B., Meyer, B. C., Martus, P., Wendt, M., Wolf, K. J., & Wacker, F. (2008). MRI of the thorax during whole-body MRI: Evaluation of different MR sequences and comparison to thoracic multidetector computed tomography (MDCT). Journal of Magnetic Resonance Imaging, 27(3), 538–545. https://doi.org/10.1002/jmri.21218
    13. Glazer, H. S., Lee, J. K., Levitt, R. G., Heiken, J. P., Ling, D., Totty, W. G., Balfe, D. M., Emani, B., Wasserman, T. H., & Murphy, W. A. (1985). Radiation fibrosis: differentiation from recurrent tumor by MR imaging. Radiology, 156(3), 721–726. https://doi.org/10.1148/radiology.156.3.4023233
    14. Goldstraw, P., Chansky, K., Crowley, J., Rami-Porta, R., Asamura, H., Eberhardt, W. E. E., Nicholson, A. G., Groome, P., Mitchell, A., Bolejack, V., Ball, D., Beer, D. G., Beyruti, R., Detterbeck, F., Edwards, J., Galateau-Sallé, F., Giroux, D., Gleeson, F., Huang, J., … Yokoi, K. (2016). The IASLC lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM Classification for lung cancer. Journal of Thoracic Oncology, 11(1), 39–51. https://doi.org/10.1016/j.jtho.2015.09.009
    15. Ha, Y. K., Yi, C. A., Kyung, S. L., Myung, J. C., Yoon, K. K., Bong, K. C., Kim, H., & Kwon, O. J. (2008). Nodal metastasis in non-small cell lung cancer: Accuracy of 3.0-T MR imaging. Radiology, 246(2), 596–604. https://doi.org/10.1148/radiol.2461061907
    16. Harders, S. W., Balyasnikowa, S., & Fischer, B. M. (2014). Functional imaging in lung cancer. In Clinical Physiology and Functional Imaging (Vol. 34, Issue 5, pp. 340–355). Blackwell Publishing Ltd. https://doi.org/10.1111/cpf.12104
    17. Hatabu, H., Gaa, J., Tadamura, E., Edinburgh, K. J., Stock, K. W., Garpestad, E., & Edelman, R. R. (1999). MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. European journal of radiology, 29(2), 152–159. https://doi.org/10.1016/s0720-048x(98)00167-3
    18. Hatabu, H., Ohno, Y., Gefter, W. B., Parraga, G., Madore, B., Lee, K. S., Altes, T. A., Lynch, D. A., Mayo, J. R., Seo, J. B., Wild, J. M., van Beek, E. J. R., Schiebler, M. L., Kauczor, H. U., & Fleischner Society (2020). Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology, 297(2), 286–301. https://doi.org/10.1148/radiol.2020201138
    19. Hatzoglou, V., Tisnado, J., Mehta, A., Peck, K. K., Daras, M., Omuro, A. M., Beal, K., & Holodny, A. I. (2017). Dynamic contrast-enhanced MRI perfusion for differentiating between melanoma and lung cancer brain metastases. Cancer Medicine, 6(4), 761–767. https://doi.org/10.1002/cam4.1046
    20. Heusch, P., Buchbender, C., Köhler, J., Nensa, F., Gauler, T., Gomez, B., Reis, H., Stamatis, G., Kühl, H., Hartung, V., & Heusner, T. A. (2014). Thoracic staging in lung cancer: Prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. Journal of Nuclear Medicine, 55(3), 373–378. https://doi.org/10.2967/jnumed.113.129825
    21. Heye, T., Ley, S., Heussel, C. P., Dienemann, H., Kauczor, H. U., Hosch, W., & Libicher, M. (2012). Detection and size of pulmonary lesions: How accurate is MRI? A prospective comparison of CT and MRI. Acta Radiologica, 53(2), 153–160. https://doi.org/10.1258/ar.2011.110445
    22. Huang, Y. Sen, Chen, J. L. Y., Hsu, F. M., Huang, J. Y., Ko, W. C., Chen, Y. C., Jaw, F. S., Yen, R. F., & Chang, Y. C. (2018). Response assessment of stereotactic body radiation therapy using dynamic contrast-enhanced integrated MR-PET in non-small cell lung cancer patients. Journal of Magnetic Resonance Imaging, 47(1), 191–199. https://doi.org/10.1002/jmri.25758
    23. Ireland, R. H., Din, O. S., Swinscoe, J. A., Woodhouse, N., Van Beek, E. J. R., Wild, J. M., & Hatton, M. Q. (2010). Detection of radiation-induced lung injury in non-small cell lung cancer patients using hyperpolarized helium-3 magnetic resonance imaging. Radiotherapy and Oncology, 97(2), 244–248. https://doi.org/10.1016/j.radonc.2010.07.013
    24. Jacobs, L., Intven, M., Lelyveld, N. Van, Philippens, M., Burbach, M., Seldenrijk, K., Los, M., & Reerink, O. (2016). Diffusion-weighted MRI for early prediction of treatment response on preoperative chemoradiotherapy for patients with locally advanced rectal cancer : a feasibility study. Annals of Surgery, 263(3), 522–528. https://doi.org/10.1097/SLA.0000000000001311
    25. Jung, B. C., Arevalo-Perez, J., Lyo, J. K., Holodny, A. I., Karimi, S., Young, R. J., & Peck, K. K. (2016). Comparison of Glioblastomas and Brain Metastases using Dynamic Contrast-Enhanced Perfusion MRI. Journal of Neuroimaging, 26(2), 240–246. https://doi.org/10.1111/jon.12281
    26. Kim, H. S., Lee, K. S., Ohno, Y., Van Beek, E. J. R., & Biederer, J. (2015). PET/CT versus MRI for diagnosis, staging, and follow-up of lung cancer. In Journal of Magnetic Resonance Imaging (Vol. 42, Issue 2, pp. 247–260). John Wiley and Sons Inc. https://doi.org/10.1002/jmri.24776
    27. Kirchner, J., Sawicki, L. M., Nensa, F., Schaarschmidt, B. M., Reis, H., Ingenwerth, M., Bogner, S., Aigner, C., Buchbender, C., Umutlu, L., Antoch, G., Herrmann, K., & Heusch, P. (2019). Prospective comparison of 18 F-FDG PET/MRI and 18 F-FDG PET/CT for thoracic staging of non-small cell lung cancer. European Journal of Nuclear Medicine and Molecular Imaging, 46(2), 437–445. https://doi.org/10.1007/s00259-018-4109-x
    28. Koyama, H., Ohno, Y., Kono, A., Takenaka, D., Maniwa, Y., Nishimura, Y., Ohbayashi, C., & Sugimura, K. (2008). Quantitative and qualitative assessment of non-contrast-enhanced pulmonary MR imaging for management of pulmonary nodules in 161 subjects. European Radiology, 18(10), 2120–2131. https://doi.org/10.1007/s00330-008-1001-2
    29. Kruger, S. J., Nagle, S. K., Couch, M. J., Ohno, Y., Albert, M., & Fain, S. B. (2016). Functional imaging of the lungs with gas agents. In Journal of Magnetic Resonance Imaging (Vol. 43, Issue 2, pp. 295–315). John Wiley and Sons Inc. https://doi.org/10.1002/jmri.25002
    30. Kumar, S., Rai, R., Stemmer, A., Josan, S., Holloway, L., Vinod, S., Moses, D., & Liney, G. (2017). Feasibility of free breathing Lung MRI for Radiotherapy using non-Cartesian k-space acquisition schemes. The British journal of radiology, 90(1080), 20170037. https://doi.org/10.1259/bjr.20170037
    31. Lee, S. H., Rimner, A., Gelb, E., Deasy, J. O., Hunt, M. A., Humm, J. L., & Tyagi, N. (2018). Correlation Between Tumor Metabolism and Semiquantitative Perfusion Magnetic Resonance Imaging Metrics in Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 102(4), 718–726. https://doi.org/10.1016/j.ijrobp.2018.02.031
    32. Lee, S. M., Goo, J. M., Park, C. M., Yoon, S. H., Paeng, J. C., Cheon, G. J., Kim, Y. T., & Park, Y. S. (2016a). Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. European Radiology, 26(11), 3850–3857. https://doi.org/10.1007/s00330-016-4255-0
    33. Lee, S. M., Goo, J. M., Park, C. M., Yoon, S. H., Paeng, J. C., Cheon, G. J., Kim, Y. T., & Park, Y. S. (2016b). Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. European Radiology, 26(11), 3850–3857. https://doi.org/10.1007/s00330-016-4255-0
    34. Leibfarth, S., Winter, R. M., Lyng, H., Zips, D., & Thorwarth, D. (2018). Potentials and challenges of diffusion-weighted magnetic resonance imaging in radiotherapy. In Clinical and Translational Radiation Oncology (Vol. 13, pp. 29–37). Elsevier Ireland Ltd. https://doi.org/10.1016/j.ctro.2018.09.002
    35. Lin, W., Guo, J., Rosen, M. A., & Hee, K. S. (2008). Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magnetic Resonance in Medicine, 60(5), 1135–1146. https://doi.org/10.1002/mrm.21740
    36. Mayerhoefer, M. E., Prosch, H., Beer, L., Tamandl, D., Beyer, T., Hoeller, C., Berzaczy, D., Raderer, M., Preusser, M., Hochmair, M., Kiesewetter, B., Scheuba, C., Ba-Ssalamah, A., Karanikas, G., Kesselbacher, J., Prager, G., Dieckmann, K., Polterauer, S., Weber, M., … Haug, A. R. (2020). PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. European Journal of Nuclear Medicine and Molecular Imaging, 47(1), 51–60. https://doi.org/10.1007/s00259-019-04452-y
    37. Messerli, M., de Galiza Barbosa, F., Marcon, M., Muehlematter, U. J., Stolzmann, P., Warschkow, R., Delso, G., Ter Voert, E. E., Huellner, M. W., Frauenfelder, T., & Veit-Haibach, P. (2019). Value of PET/MRI for assessing tumor resectability in NSCLC-intra-individual comparison with PET/CT. The British journal of radiology, 92(1093), 20180379. https://doi.org/10.1259/bjr.20180379
    38. Miller, G. W., Mugler, J. P., Sá, R. C., Altes, T. A., Prisk, G. K., & Hopkins, S. R. (2014). Advances in functional and structural imaging of the human lung using proton MRI. In NMR in Biomedicine (Vol. 27, Issue 12, pp. 1542–1556). John Wiley and Sons Ltd. https://doi.org/10.1002/nbm.3156.
    39. Ohno, Y., Koyama, H., Yoshikawa, T., Kishida, Y., Seki, S., Takenaka, D., Yui, M., Miyazaki, M., & Sugimura, K. (2017). Standard-, reduced-, and no-dose thin-section radiologic examinations: Comparison of capability for nodule detection and nodule type assessment in patients suspected of having pulmonary nodules. Radiology, 284(2), 562–573. https://doi.org/10.1148/radiol.2017161037
    40. Pasquier, D., Hadj Henni, A., Escande, A., Tresch, E., Reynaert, N., Colot, O., Lartigau, E., & Betrouni, N. (2018). Diffusion weighted MRI as an early predictor of tumor response to hypofractionated stereotactic boost for prostate cancer. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28817-9
    41. Raad, R. A., Friedman, K. P., Heacock, L., Ponzo, F., Melsaether, A., & Chandarana, H. (2016). Outcome of small lung nodules missed on hybrid PET/MRI in patients with primary malignancy. Journal of Magnetic Resonance Imaging, 43(2), 504–511. https://doi.org/10.1002/jmri.25005
    42. Raptis, C. A., McWilliams, S. R., Ratkowski, K. L., Broncano, J., Green, D. B., & Bhalla, S. (2018). Mediastinal and pleural MR imaging: Practical approach for daily practice. Radiographics, 38(1), 37–55. https://doi.org/10.1148/rg.2018170091
    43. Rauscher, I., Eiber, M., Fürst, S., Souvatzoglou, M., Nekolla, S. G., Ziegler, S. I., Rummeny, E. J., Schwaiger, M., & Beer, A. J. (2014). PET/MR imaging in the detection and characterization of pulmonary lesions: Technical and diagnostic evaluation in comparison to PET/CT. Journal of Nuclear Medicine, 55(5), 724–729. https://doi.org/10.2967/jnumed.113.129247
    44. Ren, J., Huan, Y., Wang, H., Chang, Y. J., Zhao, H. T., Ge, Y. L., Liu, Y., & Yang, Y. (2008). Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis. Clinical Radiology, 63(2), 153–159. https://doi.org/10.1016/j.crad.2007.07.023
    45. Sawicki, L. M., Grueneisen, J., Buchbender, C., Schaarschmidt, B. M., Gomez, B., Ruhlmann, V., Umutlu, L., Antoch, G., & Heusch, P. (2016). Evaluation of the outcome of lung nodules missed on 18F-FDG PET/MRI compared with 18F-FDG PET/CT in patients with known malignancies. Journal of Nuclear Medicine, 57(1), 15–20. https://doi.org/10.2967/jnumed.115.162966
    46. Sawicki, L. M., Grueneisen, J., Buchbender, C., Schaarschmidt, B. M., Gomez, B., Ruhlmann, V., Wetter, A., Umutlu, L., Antoch, G., & Heusch, P. (2016). Comparative performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in detection and characterization of pulmonary lesions in 121 oncologic patients. Journal of Nuclear Medicine, 57(4), 582–586. https://doi.org/10.2967/jnumed.115.167486
    47. Schroeder, T., Ruehm, S. G., Debatin, J. F., Ladd, M. E., Barkhausen, J., & Goehde, S. C. (2005). Detection of pulmonary nodules using a 2D HASTE MR sequence: Comparison with MDCT. American Journal of Roentgenology, 185(4), 979–984. https://doi.org/10.2214/AJR.04.0814
    48. Shen, G., Lan, Y., Zhang, K., Ren, P., & Jia, Z. (2017). Comparison of 18F-FDG PET/CT and DWI for detection of mediastinal nodal metastasis in non-small cell lung cancer: A meta-analysis. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0173104
    49. Sim, A. J., Kaza, E., Singer, L., & Rosenberg, S. A. (2020). A review of the role of MRI in diagnosis and treatment of early stage lung cancer. In Clinical and Translational Radiation Oncology (Vol. 24, pp. 16–22). Elsevier Ireland Ltd. https://doi.org/10.1016/j.ctro.2020.06.002
    50. Spick, C., Herrmann, K., & Czernin, J. (2016). 18F-FDG PET/CT and PET/MRI perform equally well in cancer: Evidence from studies on more than 2,300 patients. Journal of Nuclear Medicine, 57(3), 420–430. https://doi.org/10.2967/jnumed.115.158808
    51. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
    52. Taylor, S. A., Mallett, S., Ball, S., Beare, S., Bhatnagar, G., Bhowmik, A., Boavida, P., Bridgewater, J., Clarke, C. S., Duggan, M., Ellis, S., Glynne-Jones, R., Goh, V., Groves, A. M., Hameeduddin, A., Janes, S. M., Johnston, E. W., Koh, D. M., Lock, S., … Howling, S. (2019). Diagnostic accuracy of whole-body MRI versus standard imaging pathways for metastatic disease in newly diagnosed non-small-cell lung cancer: the prospective Streamline L trial. The Lancet Respiratory Medicine, 7(6), 523–532. https://doi.org/10.1016/S2213-2600(19)30090-6
    53. Weller, A., Papoutsaki, M. V., Waterton, J. C., Chiti, A., Stroobants, S., Kuijer, J., Blackledge, M., Morgan, V., & deSouza, N. M. (2017). Diffusion-weighted (DW) MRI in lung cancers: ADC test-retest repeatability. European Radiology, 27(11), 4552–4562. https://doi.org/10.1007/s00330-017-4828-6
    54. Wu, N. Y., Cheng, H. C., Ko, J. S., Cheng, Y. C., Lin, P. W., Lin, W. C., Chang, C. Y., & Liou, D. M. (2011). Magnetic resonance imaging for lung cancer detection: Experience in a population of more than 10,000 healthy individuals. BMC Cancer, 11. https://doi.org/10.1186/1471-2407-11-242
    55. Yamashita, Y., Yokoyama, T., Tomiguchi, S., Takahashi, M., & Ando, M. (1999). MR imaging of focal lung lesions: Elimination of flow and motion artifact by breath-hold ECG-gated and black-blood techniques on T2-weighted turbo SE and STIR sequences. Journal of Magnetic Resonance Imaging, 9(5), 691–698. https://doi.org/10.1002/(SICI)1522-2586(199905)9:5<691::AID-JMRI11>3.0.CO;2-7
    56. Yuan, M., Zhang, Y. D., Zhu, C., Yu, T. F., Shi, H. Bin, Shi, Z. F., Li, H., & Wu, J. F. (2016). Comparison of intravoxel incoherent motion diffusion-weighted MR imaging with dynamic contrast-enhanced MRI for differentiating lung cancer from benign solitary pulmonary lesions. Journal of Magnetic Resonance Imaging, 43(3), 669–679. https://doi.org/10.1002/jmri.25018
    57. Zanette, B., Stirrat, E., Jelveh, S., Hope, A., & Santyr, G. (2017). Detection of regional radiation-induced lung injury using hyperpolarized 129Xe chemical shift imaging in a rat model involving partial lung irradiation: Proof-of-concept demonstration. Advances in Radiation Oncology, 2(3), 475–484. https://doi.org/10.1016/j.adro.2017.05.005
    58. Zhang, X., Fu, Z., Gong, G., Wei, H., Duan, J., Chen, Z., Chen, X., Wang, R., & Yin, Y. (2017). Implementation of diffusion-weighted magnetic resonance imaging in target delineation of central lung cancer accompanied with atelectasis in precision radiotherapy. Oncology Letters, 14(3), 2677–2682. https://doi.org/10.3892/ol.2017.6479

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Multidisciplinary Reviews

How to cite

Betkar, D., Shetty, S. K., Kauthankar, A., Gaonkar, O., & Mavila, A. (2024). Exploring the diagnostic landscape: A narrative review of the evolving role and advancement of MRI in the detection and characterization of lung câncer. Multidisciplinary Reviews, 8(1), 2025006. https://doi.org/10.31893/multirev.2025006
  • Article viewed - 239
  • PDF downloaded - 134