• Abstract

    The use of immunosuppressive medications is an area of interest for organ transplantation. These medications have been repurposed for the treatment of cancer in recent years. In the context of cancer therapy, the use of immunosuppressive medications such as cyclosporine, tacrolimus, sirolimus, mycophenolate acid mofetil (MMF), mycophenolate, and azathioprine is discussed. Treatment for cancer frequently includes methods designed to use the immune system to find and destroy cancer cells. Cancer cells can, however, avoid immune surveillance and eradication because the tumor microenvironment frequently has immune-suppressive components. Drugs that suppress the immune system, which were initially designed to avoid organ rejection, have demonstrated potential for obstructing these inhibitory pathways and boosting antitumour immune responses. Tacrolimus and cyclosporine, two immunosuppressive medications frequently used in transplantation, have potential anticancer effects. The immune system and stifling tumor-promoting inflammatory responses, can prevent tumor growth, angiogenesis, and metastasis. Another immunosuppressive drug, sirolimus, has shown anticancer effects by reducing angiogenesis and tumor cell growth while promoting immune-mediated tumors. Mycophenolate medicines, such as MMF and mycophenolate, have strong immunosuppressive properties. By inhibiting the enzymes responsible for purine production, these enzymes aim to inhibit lymphocyte proliferation. By altering immune cell function and reducing tumor growth, these medications have demonstrated promise in the treatment of cancer. Azathioprine, a medication that suppresses the immune system and is frequently used to treat autoimmune illnesses, has also been investigated as a possible cancer treatment. Although immunosuppressive medications have potential in the treatment of cancer, their usage needs to be carefully addressed due to potential side effects and the delicate balance between immune suppression and antitumour action. The immune system plays a crucial role in identifying and eliminating abnormal cells, including those associated with cancer.

  • References

    1. Adams, D. M., Trenor, C. C., Hammill, A. M., Vinks, A. A., Patel, M. N., Chaudry, G., Wentzel, M. S., Mobberley-Schuman, P. S., Campbell, L. M., Brookbank, C., Gupta, A., Chute, C., Eile, J., McKenna, J., Merrow, A. C., Fei, L., Hornung, L., Seid, M., Dasgupta, A. R., … Azizkhan, R. G. (2016). Efficacy and Safety of Sirolimus in the Treatment of Complicated Vascular Anomalies. Pediatrics, 137(2), e20153257. https://doi.org/10.1542/peds.2015-3257
    2. Azathioprine-Induced Severe Bone Marrow Suppression | Case Reports in Clinical Practice. (n.d.). Retrieved September 5, 2023, from https://crcp.tums.ac.ir/index.php/crcp/article/view/231
    3. Bilbao, I., Salcedo, M., Gómez, M. A., Jimenez, C., Castroagudín, J., Fabregat, J., Almohalla, C., Herrero, I., Cuervas-Mons, V., Otero, A., Rubín, A., Miras, M., Rodrigo, J., Serrano, T., Crespo, G., De la Mata, M., Bustamante, J., Gonzalez-Dieguez, M. L., Moreno, A., … EVEROLIVER study group. (2015). Renal function improvement in liver transplant recipients after early everolimus conversion: A clinical practice cohort study in Spain. Liver Transplantation: Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society, 21(8), 1056–1065. https://doi.org/10.1002/lt.24172
    4. Björnsson, E. S., Gu, J., Kleiner, D. E., Chalasani, N., Hayashi, P. H., Hoofnagle, J. H., & DILIN Investigators. (2017). Azathioprine and 6-Mercaptopurine-induced Liver Injury: Clinical Features and Outcomes. Journal of Clinical Gastroenterology, 51(1), 63–69. https://doi.org/10.1097/MCG.0000000000000568
    5. Borel, J. F., Feurer, C., Gubler, H. U., & Stähelin, H. (1976). Biological effects of cyclosporin A: A new antilymphocytic agent. Agents and Actions, 6(4), 468–475. https://doi.org/10.1007/BF01973261
    6. Broen, J. C. A., & van Laar, J. M. (2020). Mycophenolate mofetil, azathioprine and tacrolimus: Mechanisms in rheumatology. Nature Reviews. Rheumatology, 16(3), 167–178. https://doi.org/10.1038/s41584-020-0374-8
    7. Cangemi, M., Montico, B., Faè, D. A., Steffan, A., & Dolcetti, R. (2019). Dissecting the Multiplicity of Immune Effects of Immunosuppressive Drugs to Better Predict the Risk of de novo Malignancies in Solid Organ Transplant Patients. Frontiers in Oncology, 9, 160. https://doi.org/10.3389/fonc.2019.00160
    8. Casanovas, T., Argudo, A., & Peña-Cala, M. C. (2011). Everolimus in clinical practice in long-term liver transplantation: An observational study. Transplantation Proceedings, 43(6), 2216–2219. https://doi.org/10.1016/j.transproceed.2011.06.015
    9. Chakkera, H., Kudva, Y., & Kaplan, B. (2017). Calcineurin Inhibitors: Pharmacologic Mechanisms Impacting Both Insulin Resistance and Insulin Secretion Leading to Glucose Dysregulation and Diabetes Mellitus. Clinical Pharmacology & Therapeutics, 101(1), 114–120. https://doi.org/10.1002/cpt.546
    10. Chitty, J. (2017). Classical and rational approaches to antifungal drug design [PhD Thesis, The University of Queensland]. https://doi.org/10.14264/uql.2017.1070
    11. Denman, A. M. (1982). Immunosuppression and the rheumatic diseases. Annals of the Rheumatic Diseases, 41(Suppl 1), 3–8.
    12. Dias-Polak, D., Bergman, R., & Avitan-Hersh, E. (2019). Mycophenolate mofetil therapy in adult patients with recalcitrant atopic dermatitis. The Journal of Dermatological Treatment, 30(1), 49–51. https://doi.org/10.1080/09546634.2018.1468068
    13. Dordal Culla, M. T., Herrera-Lasso Regás, V., Martí-Garrido, J., Rodríguez Cumplido, D., Vázquez-Revuelta, P., & Lleonart Bellfill, R. (2020). Treating COVID-19: Review of Drug Hypersensitivity Reactions. Journal of Investigational Allergology & Clinical Immunology, 30(6), 385–399. https://doi.org/10.18176/jiaci.0588
    14. Fröhlich, E. (2019). Understanding and Preventing Adverse Effects of Tacrolimus Metabolization in Transplant Patients. Current Drug Metabolism, 20(13), 1039–1040. https://doi.org/10.2174/1389200219666180806154433
    15. Fuggle, N. R., Bragoli, W., Mahto, A., Glover, M., Martinez, A. E., & Kinsler, V. A. (2015). The adverse effect profile of oral azathioprine in pediatric atopic dermatitis, and recommendations for monitoring. Journal of the American Academy of Dermatology, 72(1), 108–114. https://doi.org/10.1016/j.jaad.2014.08.048
    16. Horneff, G. (2015). Safety of biologic therapies for the treatment of juvenile idiopathic arthritis. Expert Opinion on Drug Safety, 14(7), 1111–1126. https://doi.org/10.1517/14740338.2015.1042453
    17. Jouve, T., Noble, J., Rostaing, L., & Malvezzi, P. (2019). An update on the safety of tacrolimus in kidney transplant recipients, with a focus on tacrolimus minimization. Expert Opinion on Drug Safety, 18(4), 285–294. https://doi.org/10.1080/14740338.2019.1599858
    18. Kalt, D. A. (2017). Tacrolimus: A Review of Laboratory Detection Methods and Indications for Use. Laboratory Medicine, 48(4), e62–e65. https://doi.org/10.1093/labmed/lmx056
    19. Kaltenborn, A., & Schrem, H. (2013). Mycophenolate mofetil in liver transplantation: A review. Annals of Transplantation, 18, 685–696. https://doi.org/10.12659/AOT.889299
    20. Kemmner, S., Guba, M. O., Schönermarck, U., Stangl, M., & Fischereder, M. (2020). Cyclosporine as a preferred calcineurin inhibitor in renal allograft recipients with COVID-19 infection. Kidney International, 98(2), 507–508. https://doi.org/10.1016/j.kint.2020.05.024
    21. Liddicoat, A. M., & Lavelle, E. C. (2019). Modulation of innate immunity by cyclosporine A. Biochemical Pharmacology, 163, 472–480. https://doi.org/10.1016/j.bcp.2019.03.022
    22. Masi, S., Uliana, M., Gesi, M., Taddei, S., & Virdis, A. (2019). Drug-induced hypertension: Know the problem to know how to deal with it. Vascular Pharmacology, 115, 84–88. https://doi.org/10.1016/j.vph.2019.02.002
    23. Merkel, S., Mogilevskaja, N., Mengel, M., Haller, H., & Schwarz, A. (2006). Side Effects of Sirolimus. Transplantation Proceedings, 38(3), 714–715. https://doi.org/10.1016/j.transproceed.2006.01.044
    24. Moes, D. J. A. R., Guchelaar, H.-J., & de Fijter, J. W. (2015). Sirolimus and everolimus in kidney transplantation. Drug Discovery Today, 20(10), 1243–1249. https://doi.org/10.1016/j.drudis.2015.05.006
    25. Moes, D. J. A. R., Press, R. R., den Hartigh, J., van der Straaten, T., de Fijter, J. W., & Guchelaar, H.-J. (2012). Population pharmacokinetics and pharmacogenetics of everolimus in renal transplant patients. Clinical Pharmacokinetics, 51(7), 467–480. https://doi.org/10.2165/11599710-000000000-00000
    26. Montante, A., Le Bras, A., Pagnoux, C., Perrodeau, E., Ravaud, P., Terrier, B., Guillevin, L., Durand-Zaleski, I., & French Vasculitis Study Group. (2019). Cost-effectiveness of rituximab versus azathioprine for maintenance treatment in antineutrophil cytoplasmic antibody-associated vasculitis. Clinical and Experimental Rheumatology, 37 Suppl 117(2), 137–143.
    27. Pal, P., Giri, P. P., & Sinha, R. (2019). Cyclosporine in Resistant Systemic Arthritis—A Cheaper Alternative to Biologics. Indian Journal of Pediatrics, 86(7), 590–594. https://doi.org/10.1007/s12098-019-02912-9
    28. Park, H. (2011). The Emergence of Mycophenolate Mofetilin Dermatology. The Journal of Clinical and Aesthetic Dermatology, 4(1), 18–27.
    29. Pradier, A., Papaserafeim, M., Li, N., Rietveld, A., Kaestel, C., Gruaz, L., Vonarburg, C., Spirig, R., Puga Yung, G. L., & Seebach, J. D. (2019). Small-Molecule Immunosuppressive Drugs and Therapeutic Immunoglobulins Differentially Inhibit NK Cell Effector Functions in vitro. Frontiers in Immunology, 10, 556. https://doi.org/10.3389/fimmu.2019.00556
    30. Reyes, A., Mohanty, A., Pharaon, R., & Massarelli, E. (2023). Association between Immunosuppressive Therapy Utilized in the Treatment of Autoimmune Disease or Transplant and Cancer Progression. Biomedicines, 11(1), Article 1. https://doi.org/10.3390/biomedicines11010099
    31. Risk Factors: Immunosuppression - NCI (nciglobal,ncienterprise). (2015, April 29). [CgvArticle]. https://www.cancer.gov/about-cancer/causes-prevention/risk/immunosuppression
    32. Ross, K. (2007). For organ transplant recipients, cancer threatens long-term survival. Journal of the National Cancer Institute, 99(6), 421–422. https://doi.org/10.1093/jnci/djk141
    33. Sagcal-Gironella, A. C. P., Fukuda, T., Wiers, K., Cox, S., Nelson, S., Dina, B., Sherwin, C. M. T., Klein-Gitelman, M. S., Vinks, A. A., & Brunner, H. I. (2011). Pharmacokinetics and pharmacodynamics of mycophenolic acid and their relation to response to therapy of childhood-onset systemic lupus erythematosus. Seminars in Arthritis and Rheumatism, 40(4), 307–313. https://doi.org/10.1016/j.semarthrit.2010.05.007
    34. Saliba, F., Dharancy, S., Lorho, R., Conti, F., Radenne, S., Neau-Cransac, M., Hurtova, M., Hardwigsen, J., Calmus, Y., & Dumortier, J. (2011). Conversion to everolimus in maintenance liver transplant patients: A multicenter, retrospective analysis. Liver Transplantation: Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society, 17(8), 905–913. https://doi.org/10.1002/lt.22292
    35. Setlai, B. P., Hull, R., Bida, M., Durandt, C., Mulaudzi, T. V., Chatziioannou, A., & Dlamini, Z. (2022). Immunosuppressive Signaling Pathways as Targeted Cancer Therapies. Biomedicines, 10(3), 682. https://doi.org/10.3390/biomedicines10030682
    36. Shin, H. S., Grgic, I., & Chandraker, A. (2019). Novel Targets of Immunosuppression in Transplantation. Clinics in Laboratory Medicine, 39(1), 157–169. https://doi.org/10.1016/j.cll.2018.10.008
    37. Sprague, R. G. (1950). OBSERVATIONS ON THE PHYSIOLOGIC EFFECTS OF CORTISONE AND ACTH IN MAN. Archives of Internal Medicine, 85(2), 199. https://doi.org/10.1001/archinte.1950.00230080003001
    38. Tie, Y., Tang, F., Wei, Y., & Wei, X. (2022). Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. Journal of Hematology & Oncology, 15(1), 61. https://doi.org/10.1186/s13045-022-01282-8
    39. Tönshoff, B., David-Neto, E., Ettenger, R., Filler, G., van Gelder, T., Goebel, J., Kuypers, D. R. J., Tsai, E., Vinks, A. A., Weber, L. T., & Zimmerhackl, L. B. (2011). Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplantation Reviews (Orlando, Fla.), 25(2), 78–89. https://doi.org/10.1016/j.trre.2011.01.001
    40. Vial, T., & Descotes, J. (2003). Immunosuppressive drugs and cancer. Toxicology, 185(3), 229–240. https://doi.org/10.1016/s0300-483x(02)00612-1
    41. Vitiello, D., Neagoe, P.-E., Sirois, M. G., & White, M. (2015). Effect of everolimus on the immunomodulation of the human neutrophil inflammatory response and activation. Cellular and Molecular Immunology, 12(1), 40–52. https://doi.org/10.1038/cmi.2014.24
    42. Weaver, J. L. (2012). Establishing the Carcinogenic Risk of Immunomodulatory Drugs. Toxicologic Pathology, 40(2), 267–271. https://doi.org/10.1177/0192623311427711
    43. Yoon, H.-Y., Hwang, J. J., Kim, D. S., & Song, J. W. (2018). Efficacy and safety of low-dose Sirolimus in Lymphangioleiomyomatosis. Orphanet Journal of Rare Diseases, 13(1), 204. https://doi.org/10.1186/s13023-018-0946-8
    44. Yoshikawa, N., Yokota, T., Matsuo, A., Matsumoto, N., Iwakiri, T., & Ikeda, R. (2020). Role of FK506 Binding Protein on Tacrolimus Distribution in Red Blood Cells. Pharmaceutical Research, 37(7), 143. https://doi.org/10.1007/s11095-020-02875-z
    45. Yu, M., Liu, M., Zhang, W., & Ming, Y. (2018). Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Current Drug Metabolism, 19(6), 513–522. https://doi.org/10.2174/1389200219666180129151948

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Karmore, S. M., Mude, G. S., & Date, P. R. (2024). Immunosuppressive drugs and cancer risk. Multidisciplinary Reviews, 7(11), 2024260. https://doi.org/10.31893/multirev.2024260
  • Article viewed - 241
  • PDF downloaded - 225