• Abstract

    Unmanned Aerial Vehicle (UAV) technology has been employed widely in the past several years to increase agricultural output while decreasing labor-intensive tasks, inspection times and crop management expenses. They can quickly cover enormous regions in which being utilized more often to gather important data for a variety of precision agricultural applications, such as crop/plant categorization. In particular, the use of UAVs for managing pressures such as water, illnesses, malnourishment and pests has been rising in regard to tracking and evaluating the health of plants, agriculture and woods. With an emphasis on the processes employed to extract the data from images taken during the missions, this article provides a critical summary of the major developments in the field. A review of the main investigation gaps that need to be filled and the obstacles that have been addressed is presented, along with a few proposals for further study, based on data from over 55 published studies as well as our findings. Ultimately, this review offers a thorough assessment of the state of crop classification using UAV footage, providing insights into the field; accomplishments, difficulties and potential future paths.

  • References

    1. Abidi, W., Akrimi, R. & Gouiaa, M. (2023). Impact of Moringa Leaf Extract, Olive Leaf Extract, and Calcium Chloride on Quality Attributes of Peach Cultivars during Cold Storage. Journal of Agricultural Science and Technology, 609-621.10.22034/jast.25.3.609
    2. Alhomodi, A.F., Gibbons, W.R. & Karki, B. (2022). Estimation of cellulase production by Aureobasidium pullulans, Neurospora crassa, and Trichoderma reesei during solid and submerged state fermentation of raw and processed canola meal. Bioresource Technology Reports, 18, 101063.
    3. Alkhalidy, A.A., Nasir, A.F. & Hmoud, M.S. (2020). Studying the effect of a new tillage system on some yield attributes of sunflower crop (Helianthus annuus. L). International Journal of Health Sciences, (I), 8217-8228.
    4. Andrade Junior, A.S.D., Silva, S.P.D., Setúbal, I.S., Souza, H.A.D. & Vieira, P.F. (2022). REMOTE DETECTION OF WATER AND NUTRITIONAL STATUS OF SOYBEANS USING UAV-BASED IMAGES. Engenharia Agrícola, 42, e20210177.
    5. Angel, Y. & McCabe, M.F. (2022). Machine learning strategies for the retrieval of leaf-chlorophyll dynamics: Model choice, sequential versus retraining learning, and hyperspectral predictors. Frontiers in Plant Science, 13, 722442. 10.3389/fpls.2022.722442
    6. Boursianis, A.D., Papadopoulou, M.S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S. & Goudos, S.K. (2022). Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, 18, 100187. 10.1016/j.iot.2020.100187
    7. Cheng, M., Sun, C., Nie, C., Liu, S., Yu, X., Bai, Y., Liu, Y., Meng, L., Jia, X., Liu, Y. & Zhou, L. (2023). Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize. Agricultural Water Management, 287, 108442. 10.1016/j.agwat.2023.108442
    8. Corti, M.; Cavalli, D.; Cabassi, G.; Vigoni, A.; Degano, L. & Marino Gallina, P. (2018) Application of A Low-cost Cameraon A UAV to Estimate Maize Nitrogen-related Variables. Precis. Agric, 10.1007/s11119-018-9609-y
    9. Dobbratz, M., Baker, J.M., Grossman, J., Wells, M.S. & Ginakes, P. (2019). Rotary zone tillage improves corn establishment in a kura clover living mulch. Soil and Tillage Research, 189, 229-235.
    10. Ekinzog, E.K., Schlerf, M., Kraft, M., Werner, F., Riedel, A., Rock, G. & Mallick, K. (2022). Revisiting crop water stress index based on potato field experiments in Northern Germany. Agricultural Water Management, 269, 107664.
    11. García-Martínez, H., Flores-Magdaleno, H., Ascencio-Hernández, R., Khalil-Gardezi, A., Tijerina-Chávez, L., Mancilla-Villa, O.R. & Vázquez-Peña, M.A. (2020). Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network using multispectral and RGB images acquired with unmanned aerial vehicles. Agriculture, 10(7), 277. 10.3390/agriculture10070277
    12. Ghosh, M., Swain, D.K., Jha, M.K. & Tewari, V.K. (2020). Chlorophyll meter-based nitrogen management in a rice–wheat cropping system in Eastern India. International Journal of Plant Production, 14, 355-371.
    13. Herzig, P., Borrmann, P., Knauer, U., Klück, H.C., Kilias, D., Seiffert, U., Pillen, K. & Maurer, A. (2021). Evaluation of RGB and multispectral unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping and yield prediction in barley breeding. Remote Sensing, 13(14), 2670.
    14. Hong, Z., Yang, F., Pan, H., Zhou, R., Zhang, Y., Han, Y., Wang, J., Yang, S., Chen, P., Tong, X. & Liu, J. (2021). Highway crack segmentation from unmanned aerial vehicle images using deep learning. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.10.1109/LGRS.2021.3129607
    15. Ihnatiev, Y., Bulgakov, V., Bonchik, V., Ruzhylo, Z., Zaryshnyak, A., Volskiy, V., Melnik, V. & Olt, J. (2021). Experimental research into the operation of potato harvester with rotary tool.
    16. Jamshidi, S., Zand-Parsa, S. & Niyogi, D. (2021). Assessing crop water stress index of citrus using in situ measurements, Landsat, and sentinel-2 data. International Journal of Remote Sensing, 42(5), 1893-1916.10.1080/01431161.2020.1846224
    17. Jiang, F., Zhang, H., Zhang, L., Feng, J., Wang, W., Zhang, Z., Musa, A., Wu, D. & Yang, Y. (2020). Antioxidant and neuroprotector influence of endo-polyphenol extract from magnesium acetate multistage addition in the oak bracket medicinal mushroom, Phellinus baumii (Agaricomycetes). International Journal of Medicinal Mushrooms, 22(2).
    18. Khalid, M., Ayayda, R., Gheith, N., Salah, Z., Abu-Lafi, S., Jaber, A., Al-Rimawi, F. & Al-Mazaideh, G. (2020). Assessment of Antimicrobial and Anticancer Activity ofRadish Sprouts Extracts. Jordan Journal of Biological Sciences, 13(4).
    19. Krishnan, V.G., Deepa, J.R.V.P., Rao, P.V., Divya, V. & Kaviarasan, S. (2022). An automated segmentation and classification model for banana leaf disease detection. Journal of Applied Biology and Biotechnology, 10(1), 213-220.
    20. Kuznetsov, P., Solovyev, S., Gorshenin, V. & Manaenkov, K. (2020). Reduction of soil layer losses when harvesting sugar beet in the conditions of the central black earth region. In E3S Web of Conferences 210, 04007.
    21. Liu, Y., Feng, H., Yue, J., Jin, X., Li, Z. & Yang, G. (2022). Estimation of potato above-ground biomass based on unmanned aerial vehicle red‒green-blue images with different texture features and crop height. Frontiers in Plant Science, 13, 938216.10.3389/fpls.2022.938216
    22. Lu, J., Eitel, J.U., Engels, M., Zhu, J., Ma, Y., Liao, F., Zheng, H., Wang, X., Yao, X., Cheng, T. & Zhu, Y. (2021). Improving Unmanned Aerial Vehicle (UAV) remote sensing of rice plant potassium accumulation by fusing spectral and textural information. International Journal of Applied Earth Observation and Geoinformation, 104, 102592
    23. Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza Scarascia, G.; Harfouche, A. (2017) UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought. Front. Plant Sci., 8, 1681.10.3389/fpls.2017.01681.
    24. Malamiri, H.R.G., Aliabad, F.A., Shojaei, S., Morad, M. & Band, S.S. (2021). A study on the use of UAV images to improve the separation accuracy of agricultural land areas. Computers and electronics in agriculture, 184, 106079./10.1016/j.com.
    25. Mammarella, M., Comba, L., Biglia, A., Dabbene, F. & Gay, P. (2022). Cooperation of unmanned systems for agricultural applications: A case study in a vineyard. biosystems engineering, 223, 81-102. 10.1016/j.biosystemseng.2021.12.010(45)
    26. Manganaris, G.A., Minas, I., Cirilli, M., Torres, R., Bassi, D. & Costa, G. (2022). Peach for the future: A specialty crop revisited. Scientia Horticulturae, 305, 111390.
    27. Martinez-Guanter, J., Agüera, P., Agüera, J. & Pérez-Ruiz, M. (2020). Spray and economics assessment of a UAV-based ultralow-volume application in olive and citrus orchards. Precision Agriculture, 21, 226-243.
    28. Messina, G., Fiozzo, V., Praticò, S., Siciliani, B., Curcio, A., Di Fazio, S. & Modica, G. (2020), May. Monitoring Onion Crops Using Multispectral Imagery from Unmanned Aerial Vehicle (UAV). In INTERNATIONAL SYMPOSIUM: New Metropolitan Perspectives, 1640-1649. Cham: Springer International Publishing.
    29. Meza-Valderrama, D., Marco, E., Dávalos-Yerovi, V., Muns, M.D., Tejero-Sánchez, M., Duarte, E. & Sánchez-Rodríguez, D. (2021). Sarcopenia, malnutrition, and cachexia: adapting definitions and terminology of nutritional disorders in older people with cancer. Nutrients, 13(3), 761.10.3390/nu13030761
    30. Nhamo, L., Magidi, J., Nyamugama, A., Clulow, A.D., Sibanda, M., Chimonyo, V.G. & Mabhaudhi, T. (2020). Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture, 10(7), 256.
    31. Rai, V.P., Ranjan, R., Gadhiya, A.R. & Mote, B.M. (2021). Use of modern physical tools for mitigating the effect of abiotic stresses. In Stress Tolerance in Horticultural Crops, 387-397. Woodhead Publishing.
    32. Rondon, S.I., Feldman, M., Thompson, A., Oppedisano, T. & Shrestha, G. (2021). Identifying resistance to the Colorado potato beetle (Leptinotarsa decemlineata Say) in potato germplasm: Review update. Frontiers in Agronomy, 3, 642189
    33. Sala, F., Popescu, C.A., Herbei, M.V. & Rujescu, C. (2020). Model of color parameters variation and correction about "Time-View" image acquisition effects in wheat crop. Sustainability, 12(6), 2470.10.3390/su12062470
    34. Santaga, F.S., Benincasa, P., Toscano, P., Antognelli, S., Ranieri, E. & Vizzari, M. (2021). Simplified and advanced sentinel-2-based precision nitrogen management of wheat. Agronomy, 11(6), 1156.10.3390/agronomy11061156
    35. Schiano, E., Novellino, E., Gámez Fernández, M.M., Tiekou Lorinczova, H., Tenore, G.C., Iannuzzo, F., Patel, V.B., Somavarapu, S. & Zariwala, M.G. (2023). Antioxidant and Antidiabetic Properties of a Thinned-Nectarine-Based Nanoformulation in a Pancreatic β-Cell Line. Antioxidants, 13(1), 63.
    36. Schmidt, W., Thomine, S. & Buckhout, T.J. (2020). Iron nutrition and interactions in plants. Frontiers in plant science, 10, 1670.10.3389/fpls.2019.01670
    37. Sehree, N.A. & Khidhir, A.M. (2022). Olive tree case classification based on deep convolutional neural network from unmanned aerial vehicle imagery. Indonesian Journal of Electrical Engineering and Computer Science, 27(1), 92-101.
    38. Silvestre, W.P., Pauletti, G.F., Godinho, M. & Baldasso, C. (2018). Fodder radish seed cake pyrolysis for bio-oil production in a rotary kiln reactor. Chemical Engineering and Processing-Process Intensification, 124, 235-244.
    39. Solberg, S., Næsset, E., Hanssen, K.H. & Christiansen, E. (2019). Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sensing of Environment, 102(3-4), 364-376.10.3390/f8070231
    40. Sun, Q., Wang, H.M., Ma, C.Y., Hong, S., Sun, Z. & Yuan, T.Q. (2023). Dynamic structural evolution of lignin macromolecules and hemicelluloses during Chinese pine growth. International Journal of Biological Macromolecules, 235, 123688.
    41. Susana, I.G.B., Alit, I.B. & Okariawan, I.D.K. (2023). Rice husk energy rotary dryer experiment for improved solar drying thermal performance on cherry coffee. Case Studies in Thermal Engineering, 41, 102616.
    42. Syeda, I.H., Alam, M.M., Illahi, U. & Su'ud, M.M. (2021). Advance control strategies using image processing, UAV and AI in agriculture: a review. World Journal of Engineering, 18(4), 579-589.
    43. Tao, H., Li, C., Zhao, D., Deng, S., Hu, H., Xu, X. & Jing, W. (2020). Deep learning-based dead pine tree detection from unmanned aerial vehicle images. International Journal of Remote Sensing, 41(21), 8238-8255.10.1080/01431161.2020.1766145
    44. Tarasenko, B., Kusa, K., Dzjasheev, A.M., Karnaukhov, A., Tikhonov, E., Sokolova, V. & Babaev, S.M. (2023). Upgraded rotary harrow for vineyards. In E3S Web of Conferences, 390. EDP Sciences.
    45. Toselli, M., Baldi, E., Ferro, F., Rossi, S. & Cillis, D. (2023). Smart Farming Tool for Monitoring Nutrients in Soil and Plants for Precise Fertilization. Horticulturae, 9(9), 1011.10.3390/horticulturae9091011
    46. Wang, Z., Griffin, A.S., Lucas, A. & Wong, K.C. (2019). Psychological warfare in the vineyard: Using drones and bird psychology to control bird damage to wine grapes. Crop Protection, 120, 163-170.
    47. Wu, J., Wen, S., Lan, Y., Yin, X., Zhang, J. & Ge, Y. (2022). Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography. Plant Methods, 18(1), 129.
    48. Wu, X.Q., Liu, P.D., Liu, Q., Xu, S.Y., Zhang, Y.C., Xu, W.R. & Liu, G.D. (2021). Production of cellulose nanofibrils and films from elephant grass using deep eutectic solvents and a solid acid catalyst. RSC advances, 11(23), 14071-14078.
    49. Xia, L., Zhang, R., Chen, L., Li, L., Yi, T., Wen, Y., Ding, C. & Xie, C. (2021). Evaluation of deep learning segmentation models for detection of pine wilt disease in unmanned aerial vehicle images. Remote Sensing, 13(18), 3594.10.3390/rs13183594
    50. Xu, G., Xie, Y., Matin, M.A., He, R. & Ding, Q. (2022). Effect of straw length, stubble height, and rotary speed on residue incorporation by rotary tillage in an intensive rice‒wheat rotation system. Agriculture, 12(2), 222.10.3390/agriculture12020222
    51. Zhang, J., Maleski, J., Schwartz, B., Dunn, D., Mailhot, D., Ni, X., Harris-Shultz, K., Knoll, J. & Toews, M. (2021). Assessing spatiotemporal patterns of sugarcane aphid (Hemiptera: Aphididae) infestations on silage sorghum yield using unmanned aerial systems (UAS). Crop Protection, 146, 105681.
    52. Zhang, K., Wang, X., Li, Y., Zhao, J., Yang, Y., Zang, H. & Zeng, Z. (2022). Peanut residue incorporation benefits crop yield, nitrogen yield, and water use efficiency of summer peanut–winter wheat systems. Field Crops Research, 279, 108463.
    53. Zhang, Z., Flores, P., Friskop, A., Liu, Z., Igathinathane, C., Han, X., Kim, H.J., Jahan, N., Mathew, J. & Shreya, S. (2022). Enhancing wheat disease diagnosis in a greenhouse using image deep features and parallel feature fusion. Frontiers in Plant Science, 13, 834447.
    54. Zheng, H., Zhou, X., He, J., Yao, X., Cheng, T., Zhu, Y., Cao, W. & Tian, Y. (2020). Early season detection of rice plants using, NIR-GB, and multispectral images from unmanned aerial vehicle (UAV). Computers and Electronics in Agriculture, 169, 105223.10.1016/j.compag.2020.105223
    55. Zipori, I., Erel, R., Yermiyahu, U., Ben-Gal, A. & Dag, A. (2020). Sustainable management of olive orchard nutrition: A review. Agriculture, 10(1), 11.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Malque Publishing

How to cite

Makhija, H., Yadav, R. K., Kopare, A., Singh, L., & Shankar, A. (2024). Categorizing agricultural crops using unmanned aerial vehicle images: An in-depth review. Multidisciplinary Reviews, 6, 2023ss075. https://doi.org/10.31893/multirev.2023ss075
  • Article viewed - 17
  • PDF downloaded - 6