• Abstract

    The worldwide search for eco-friendly energy sources has raised interest in biodiesel as a possible replacement for traditional fossil fuels. The goal of this study is to thoroughly examine the benefits and drawbacks of biodiesel while considering possible future developments for engine fuels. Researchers have focused a lot of interest on biodiesel since its introduction as a renewable alternative fuel. The fundamental components of biodiesel are created through the transesterification of plant, animal, or even waste cooking oil. Biodiesel is used to fully use natural resources and lessen the severity of oil shortages and environmental harm. Without requiring any modifications, biodiesel can be used straight to car engines to enhance engine combustion and lower negative emissions. This study's main goal is to give a general overview of how biodiesel applications affect diesel engines, considering how they affect emissions, vibration, noise levels, compatibility, engine performance and combustion characteristics. This study covers unregulated emissions, concentrating on two topics that have not been thoroughly studied: Polycyclic Aromatic Hydrocarbons (PAHs) and Volatile Organic Compounds (VOCs). This will be crucial that regulators, researchers and industry stakeholders understand the full spectrum of consequences associated with biodiesel as they collaborate to develop engine fuels in a sustainable and ethical manner.

  • References

    1. Abed, K. A., El Morsi, A. K., Sayed, M. M., El Shaib, A. A., & Gad, M. S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian journal of petroleum, 27(4), 985-989. DOI: 10.1016/j.ejpe.2018.02.008
    2. Alizadeh, R., Lund, P. D., & Soltanisehat, L. (2020). Outlook on biofuels in future studies: A systematic literature review. Renewable and Sustainable Energy Reviews, 134, 110326. DOI: 10.1016/j.rser.2020.110326
    3. Allami, H. A., Tabasizadeh, M., Rohani, A., Nayebzadeh, H., Farzad, A., & Hoseinpour, M. (2023). Modeling and optimization of performance and emission parameters of a diesel engine: A comparative evaluation between date seed oil biodiesel produced via three different heating systems. Energy Conversion and Management, 283, 116909. DOI: 10.1016/j.enconman.2023.116909
    4. Altarazi, Y. S., Yu, J., Gires, E., Ghafir, M. F. A., Lucas, J., & Yusaf, T. (2022). Effects of biofuel on engines performance and emission characteristics: A review. Energy, 238, 121910. DOI: 10.1016/j.energy.2021.121910
    5. Anwar, M., Rasul, M. G., & Ashwath, N. (2020). A pragmatic and critical analysis of engine emissions for biodiesel blended fuels. Fuel, 270, 117513. DOI: 10.1016/j.fuel.2020.117513
    6. Ashfaque, A., Naidu, S. R. M., Kumar, M., Yadav, R. K., Sohal, J. K., Shariff, S. H., ... & Sharma, A. (2023). Impact of biodiesel on engine performance and emission. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2023.07.275
    7. Chandran, D. (2020). Compatibility of diesel engine materials with biodiesel fuel. Renewable energy, 147, 89-99. DOI: 10.1016/j.renene.2019.08.040
    8. Chountalas, T. D., Founti, M., & Tsalavoutas, I. (2023). Evaluation of biofuel effect on performance & emissions of a 2-stroke marine diesel engine using on-board measurements. Energy, 278, 127845. DOI: 10.1016/j.energy.2023.127845
    9. Goga, G., Chauhan, B. S., Mahla, S. K., Cho, H. M., Dhir, A., & Lim, H. C. (2018). Properties and characteristics of various materials used as biofuels: A review. Materials Today: Proceedings, 5(14), 28438-28445. DOI: 10.1016/j.matpr.2018.10.130
    10. Hamidi, R., Damizia, M., De Filippis, P., Patrizi, D., Verdone, N., Vilardi, G., & de Caprariis, B. (2023). Recent developments and future outlooks of hydrodynamic cavitation as an intensification technology for renewable biofuel production. Journal of Environmental Chemical Engineering, 110819. DOI: 10.1016/j.jece.2023.110819
    11. Jaikumar, S., Bhatti, S. K., & Srinivas, V. (2019). Emission and vibration characteristics of Niger seed oil biodiesel fueled diesel engine. Journal of mechanical engineering and sciences, 13(4), 5862-5874. DOI: 10.15282/jmes.13.4.2019.11.0467
    12. Jin, C., & Wei, J. (2023). The combined effect of water and nanoparticles on diesel engine powered by biodiesel and its blends with diesel: a review. Fuel, 343, 127940. DOI: 10.1016/j.fuel.2023.127940
    13. Khan, M. Z. A., Khan, H. A., Ravi, S. S., Turner, J. W., & Aziz, M. (2023). The potential of clean liquid fuels in decarbonizing transportation–An overlooked net-zero pathway? Renewable and Sustainable Energy Reviews, 183, 113483. DOI: 10.1016/j.rser.2023.113483
    14. Khan, T. Y. (2020). A review of performance-enhancing innovative modifications in biodiesel engines. Energies, 13(17), 4395. DOI: 10.3390/en13174395
    15. Kim, H. Y., Ge, J. C., & Choi, N. J. (2019). Effects of fuel injection pressure on combustion and emission characteristics under low-speed conditions in a diesel engine fueled with palm oil biodiesel. Energies, 12(17), 3264. DOI: 10.3390/en12173264
    16. Krishnamoorthi, T., Sudalaimuthu, G., Dillikannan, D., & Jayabal, R. (2023). Influence of thermal barrier coating on performance and emission characteristics of a compression ignition engine fueled with Delonix regia seed biodiesel. Journal of Cleaner Production, 420, 138413. DOI: 10.1016/j.jclepro.2023.138413
    17. Mehra, K. S., Pal, J., & Goel, V. (2023). A comprehensive review of the atomization and spray characteristics of renewable biofuels. Sustainable Energy Technologies and Assessments, 56, 103106. DOI: 10.1016/j.seta.2023.103106
    18. Nabi, M. N., Rasul, M. G., Anwar, M., & Mullins, B. J. (2019). Energy, exergy, performance, emission and combustion characteristics of diesel engine using new series of non-edible biodiesels. Renewable energy, 140, 647-657. DOI: 10.1016/j.renene.2019.03.066
    19. Niculae, A. L., Chiriac, R., & Racovitza, A. (2022). Effects of injection rate shape on performance and emissions of a diesel engine fuelled by diesel and biodiesel B20. Applied Sciences, 12(3), 1333. DOI: 10.3390/app12031333
    20. Niyas, M. M., & Shaija, A. (2022). Performance evaluation of diesel engine using biodiesels from waste coconut, sunflower, and palm cooking oils, and their hybrids. Sustainable Energy Technologies and Assessments, 53, 102681. DOI: 10.1016/j.seta.2022.102681
    21. Pla, B., De la Morena, J., Bares, P., & Jimenez, I. (2023). In-cylinder pressure smart sampling for efficient data management. International Journal of Engine Research, 24(7), 2949-2957. DOI: 10.1177/14680874221136769
    22. Rajak, U., & Verma, T. N. (2018). Spirulina microalgae biodiesel–A novel renewable alternative energy source for compression ignition engine. Journal of cleaner production, 201, 343-357. DOI: 10.1016/j.jclepro.2018.08.057
    23. Rajak, U., Nashine, P., & Verma, T. N. (2019). Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy, 166, 1025-1036. DOI: 10.1016/j.energy.2018.10.098
    24. Raman, L. A., Deepanraj, B., Rajakumar, S., & Sivasubramanian, V. (2019). Experimental investigation on performance, combustion, and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel, 246, 69-74. DOI: 10.1016/j.fuel.2019.02.106
    25. Saxena, V., Kumar, N., & Saxena, V. K. (2023). Methodologies for modification of characteristics of biodiesel for wider acceptability as diesel engine fuel. In Advancement in Oxygenated Fuels for Sustainable Development (pp. 139-160). Elsevier. DOI: 10.1016/B978-0-323-90875-7.00014-9
    26. Siddique, M. B. M., Khairuddin, N., Ali, N. A., Hassan, M. A., Ahmed, J., Kasem, S., ... & Afrouzi, H. N. (2021). A comprehensive review on the application of bioethanol/biodiesel in direct injection engines and consequential environmental impact. Cleaner Engineering and Technology, 3, 100092. DOI: 10.1016/j.clet.2021.100092
    27. Singh, M., & Sandhu, S. S. (2020). Performance, emission, and combustion characteristics of multi-cylinder CRDI engine fueled with argemone biodiesel/diesel blends. Fuel, 265, 117024. DOI: 10.1016/j.fuel.2020.117024
    28. Soto, F., Dorado-Vicente, R., Torres-Jiménez, E., & Cruz-Peragón, F. (2023). Prediction of emissions and performance from transient driving cycles using stationary conditions: Study of advanced biofuels under the ETC test. Case Studies in Thermal Engineering, 41, 102618. DOI: 10.1016/j.csite.2022.102618
    29. Teoh, Y. H., Yu, K. H., How, H. G., & Nguyen, H. T. (2019). Experimental investigation of performance, emission, and combustion characteristics of a common-rail diesel engine fuelled with bioethanol as a fuel additive in coconut oil biodiesel blends. Energies, 12(10), 1954. DOI: 10.3390/en12101954
    30. Turkcan, A. (2020). The effects of different types of biodiesels and biodiesel-bioethanol-diesel blends on the cyclic variations and correlation coefficient. Fuel, 261, 116453. DOI: 10.1016/j.fuel.2019.116453
    31. Uyumaz, A. (2020). Experimental evaluation of linseed oil biodiesel/diesel fuel blends on combustion, performance, and emission characteristics in a DI diesel engine. Fuel, 267, 117150. DOI: 10.1016/j.fuel.2020.117150
    32. Wang, Z., Paulauskiene, T., Uebe, J., & Bucas, M. (2020). Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications. Journal of Marine Science and Engineering, 8(9), 730. DOI: 10.3390/jmse8090730
    33. Wong, P. K., Chen, S. H., Ghadikolaei, M. A., Ng, K. W., Lee, S. M. Y., Xu, J. C., ... & Gali, N. K. (2023). Physical properties and structural characteristics of particulate matter emitted from a diesel engine fueled with biodiesel blends. Environmental Pollution, 122099. DOI: 10.1016/j.envpol.2023.122099
    34. Zhang, Y., Zhong, Y., Wang, J., Tan, D., Zhang, Z., & Yang, D. (2021). Effects of different biodiesel-diesel blend fuel on combustion and emission characteristics of a diesel engine. Processes, 9(11), 1984. DOI: 10.3390/pr9111984
    35. Zhongcheng, W., Paulauskiene, T., Uebe, J., & Bucas, M. (2020). Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications. DOI: 10.3390/jmse8090730

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Malque Publishing

How to cite

Kumar, R., Nagappan, B., Agarwal, T., & Giri, S. (2024). Unveiling the pros and cons: Consequences of biodiesel in shaping the future of engine fuels. Multidisciplinary Reviews, 6, 2023ss061. https://doi.org/10.31893/multirev.2023ss061
  • Article viewed - 221
  • PDF downloaded - 89