• Abstract

    Fingerprint analysis has been an essential component of forensic science and biometric authentication systems. The precise recognition of fingerprint patterns is critical for solving crimes, confirming identities and assuring the security of numerous applications. In recent years, the convergence of learning approaches, particularly machine learning and deep learning, has played an essential part in improving the accuracy and efficiency of fingerprint pattern recognition. In this paper, we discuss recent advancements in physiological-based biometric multimodalities, with a particular focus on the field of precise pattern identification in fingerprint analysis. Additionally, we assume the task of summarizing and examining a range of physiological-based biometric modalities, encompassing both traditional and deep learning approaches. A detailed review of several biometric measurements across many modalities is presented, encompassing various phases, including preprocessing, feature extraction and classification, which are thoroughly discussed. We provide a comprehensive analysis of the challenges and future developments associated with conventional and deep learning methodologies. The objective is to enable investigators to recognize these problems. A review is conducted to evaluate the standard and deep learning approaches employed in different physiological-based biometric systems. The comparative analysis of this review suggests that more advancement is necessary for the development of a reliable physiological-based approach to enhance and optimize the functionality of the fingerprint system.

  • References

    1. Adam DEEB & Sathesh P (2021) Evaluation of fingerprint liveness detection by machine learning approach-a systematic view. Journal of IoT in Social, Mobile, Analytics, and Cloud, 3(1), 16-30. Doi: 10.36548/jismac.2021.1.002
    2. Ahmed T & Sarma M (2018) An advanced fingerprint matching using minutiae-based indirect local features. Multimed Tools Appl, 77(15), 19931:19950. Doi: 10.1007/s11042-017-5444-9
    3. Cao K & Jain AK (2018) Fingerprint indexing and matching: an integrated approach. In: IEEE international joint conference on biometrics, 437, 445.Doi: 10.1109/BTAS.2017.8272728
    4. Cao K & Jain AK (2019) Automated latent fingerprint recognition. IEEE Trans Pattern Anal Mach Intell, 41(4), 788:800. Doi: 10.1109/TPAMI.2018.2818162
    5. Chugh T, Cao K & Jain AK (2018) Fingerprint spoof buster: Use of minutiae-centered patches. IEEE Transactions on Information Forensics and Security, 13(9), 2190.Doi: 10.1109/TIFS.2018.2812193
    6. Chugh T, Cao K & Jain AK (2018) Fingerprint spoof detection using minutiae-based local patches. In: IEEE international joint conference on biometrics, IJCB 2017, 2018 January, 581, 589.Doi: https://doi.org/10.1109/BTAS.2017.8272745
    7. Dargan S & Kumar (2020) A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Systems with Applications, 143, 113114.Doi: 10.1016/j.eswa.2019.113114
    8. Darlow LN & Rosman B (2018) Fingerprint minutiae extraction using deep learning. In: IEEE international joint conference on biometrics, IJCB 2017, 2018 January, 22, 30. Doi: 10.1109/BTAS.2017.8272678
    9. Das R, Piciucco E, Maiorana E & Campisi P (2018) Convolutional neural network for finger-vein-based biometric identification. IEEE Transactions on Information Forensics and Security, 14(2), 360-373.Doi: 10.1109/TIFS.2018.2850320
    10. De Santis M, Agnelli S, Don V & Gnocchi C (2017) 3D ultrasound palm vein recognition through the centroid method for biometric purposes, 1–4. Doi: 10.1109/ULTSYM.2017.8091946
    11. DonidaLabati R, Genovese A, Muñoz E, Piuri V & Scotti F (2018) A novel pore extraction method for heterogeneous fingerprint images using convolutional neural networks. Pattern Recognit Lett, 113(58), 66. Doi: 10.1016/j.patrec.2017.04.001
    12. Ehatisham-ul-Haq M, Azam MA, Naeem U, Amin Y & Loo J (2018) Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing. Journal of Network and Computer Applications, 109, 24-35. Doi: 10.1016/j.jnca.2018.02.020
    13. Gomez-barrero M, Kolberg J & Busch C (2018) towards multimodal finger presentation attack detection. In: 2018 14th international conference on signal-image technology & internet-based systems (SITIS), 547, 552. Doi: 10.1109/SITIS.2018.00089
    14. Guo X, Zhu E & Yin J (2018) A fast and accurate method for detecting fingerprint reference point. Neural Comput Appl 29(1), 21-31. Doi: 10.1007/s00521-016-2285-9
    15. Harish M, Karthick R, Rajan RM & Vetriselvi V (2019) Iccce (2018) In: Proceedings of the international conference on communications and cyber physical engineering 2018, vol 500. Doi: 10.1007/978-3-030-33614-1_14
    16. Jang HU, Kim D, Mun SM, Choi S & Lee HK (2017) DeepPore: fingerprint pore extraction using deep convolutional neural networks. IEEE Signal Process Lett, 24(12), 1808:1812. Doi: 10.1109/LSP.2017.2761454
    17. Jeon WS & Rhee SY (2017) Fingerprint pattern classification using convolution neural network. Int J Fuzzy Logic Intell Syst, 17(3), 170-176. Doi: 10.5391/IJFIS.2017.17.3.170
    18. Jinich A, Sanchez-Lengeling B, Ren H, Harman R & Aspuru-Guzik A (2019) A mixed quantum chemistry/machine learning approach for the fast and accurate prediction of biochemical redox potentials and its large-scale application to 315 000 redox reactions. ACS central science, 5(7), 1199, 1210. Doi:10.1021/acscentsci.9b00297
    19. Joshi I, Anand A, Vatsa M, Singh R, Roy SD & Kalra PK (2019) Latent fingerprint enhancement using generative adversarial networks. In: Proceedings—2019 IEEE winter conference on applications of computer vision, WACV 2019, 895, 903. Doi: 10.1109/WACV.2019.00100
    20. Khan AI & Wani MA (2019) Patch-based segmentation of latent fingerprint images using convolutional neural network. Appl ArtifIntell, 33(1), 87-100. Doi: 10.1080/08839514.2018.1526704
    21. Khodadoust J & Khodadoust AM (2017) Fingerprint indexing based on minutiae pairs and convex core point. Pattern Recognit, 67, 110-126. Doi: 10.1016/j.patcog.2017.01.022
    22. Krish RP, Fierrez J, Ramos D, Alonso-Fernandez F & Bigun J (2019) Improving automated latent fingerprint identification using extended minutia types. Inf Fusion, 50, 9-19. Doi: 10.1016/j.inffus.2018.10.001
    23. Labati RD, Muñoz E, Piuri V, Sassi R & Scotti F (2019) Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recognition Letters, 126, 78-85. Doi: 10.1016/j.patrec.2018.03.028
    24. Li J, Feng J & Kuo CCJ (2018) Deep convolutional neural network for latent fingerprint enhancement. Signal Process Image Commun, 60, 52-63. Doi: 10.1016/j.image.2017.08.010
    25. Lian S, Luo Z, Zhong Z, Lin X, Su S & Li S (2018) Attention guided U-Net for accurate iris segmentation. Journal of Visual Communication and Image Representation, 56, 296-304. Doi: 10.1016/j.jvcir.2018.10.001
    26. Manickam A, Devarasan E, Manogaran G, Priyan MK, Varatharajan R, Hsu CH & Krishnamoorthi R (2019) Score level based latent fingerprint enhancement and matching using SIFT feature. Multimed Tools Appl, 78(3), 3065-3085. Doi: 10.1007/s11042-018-5633-1
    27. Mura V, Orru G, Casula R, Sibiriu A, Loi G, Tuveri P et al. (2018) LivDet (2017) fingerprint liveness detection competition 2017. In: Proceedings—2018 international conference on biometrics, ICB 2018, 297-302. Doi: 10.1109/ICB2018.2018.00052
    28. Nachar R, Inaty E, Bonnin PJ & Alayli Y (2020) Hybrid minutiae and edge corners feature points for increased fingerprint recognition performance. Pattern Anal Appl, 23(1), 213-222. Doi: 10.1007/s10044-018-00766-z
    29. Nguyen DL, Cao K & Jain AK (2018) Robust minutiae extractor: integrating deep networks and fingerprint domain knowledge. In: Proceedings—2018 international conference on biometrics, ICB 2018, 9, 16. Doi: 10.1109/ICB2018.2018.00013
    30. Panetta K, Kamath SKM, Rajeev S & Agaian SS (2019) LQM: localized quality measure for fingerprint image enhancement. IEEE Access, 7, 104567–104576. Doi: https://doi.org/10.1109/ACCESS.2019.2931980
    31. Park Y, Jang U & Lee EC (2018) Statistical anti-spoofing method for fingerprint recognition. Soft Comput, 22(13), 4175-4184. Doi: 10.1007/s00500-017-2707-3
    32. Peralta D, García S, Benitez JM & Herrera F (2017) Minutiaebased fingerprint matching decomposition: methodology for big data frameworks. Inf Sci 408, 198-212. Doi: 10.1016/j.ins.2017.05.001
    33. Rida I, Al-Maadeed N, Al-Maadeed S & Bakshi S (2020) A comprehensive overview of feature representation for biometric recognition. Multimedia Tools and Applications, 79, 4867-4890. Doi: 10.1007/s11042-018-6808-5
    34. Sharma RP & Dey S (2019) Quality analysis of fingerprint images using local phase quantization. Doi: 10.1007/978-3-030-29888-3_53
    35. Svoboda J, Monti F & Bronstein MM (2018) Generative convolutional networks for latent fingerprint reconstruction. In: IEEE international joint conference on biometrics, IJCB 2017, 2018 January, 429-436. Doi: 10.1109/BTAS.2017.8272727
    36. Tang Y, Gao F, Feng J & Liu Y (2017) October. FingerNet: An unified deep network for fingerprint minutiae extraction. IEEE, 108-116. Doi: 10.1109/BTAS.2017.8272688
    37. Tran MH, Duong TN, Nguyen DM & Dang QH (2017) A local feature vector for an adaptive hybrid fingerprint matcher. In: Proceedings of KICS-IEEE international conference on information and communications with samsung LTE and 5G special workshop, ICIC 2017, 249-253. Doi: https://10.1109/INFOC.2017.8001668
    38. Wang F, Feng J, ZhaoY, ZhangX, Zhang S & Han J (2019) Joint activity recognition and indoor localization with WiFi fingerprints. IEEE Access, 7, 80058-80068: Doi:10.1109/ACCESS.2019.2923743
    39. Wang S, Yang W & Hu J (2017) Design of alignment-free cancelable fingerprint templates with zoned minutia pairs. Pattern Recognition, 66, 295-301. Doi: 10.1016/j.patcog.2013.10.003
    40. Yang J, Wei J & Shi Y (2019) Accurate ROI localization and hierarchical hyper-sphere model for finger-vein recognition. Neurocomputing, 328, 171-181. Doi: 10.1016/j.neucom.2018.02.098

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Malque Publishing

How to cite

Agarwal, T., Shrimal, G., Shahid, M., & Sujayaraj, S. (2024). Survey on the convergence of learning techniques for precise pattern identification in fingerprint analysis. Multidisciplinary Reviews, 6, 2023ss060. https://doi.org/10.31893/multirev.2023ss060
  • Article viewed - 11
  • PDF downloaded - 3