• Abstract

    This bibliometric study on insurtech explores the transformative impact of technological innovations such as AI, machine learning, big data, IoT, and blockchain on the insurance industry. Utilizing Scopus for bibliographic data and adhering to the PRISMA flow chart for the meticulous screening, inclusion, and exclusion of studies, the research employs advanced bibliometric tools including biblioshiny, VOSviewer, and CiteSpace to conduct a comprehensive analysis. The findings reveal an upward trend in annual scientific production, highlighting the field's dynamic evolution and growing interest. The study identifies the most productive authors and analyzes coauthorship patterns to understand collaboration networks. Through cocitation analysis, influential authors and seminal works are identified, offering insights into the academic lineage and intellectual foundations of insurtech research. Network visualizations of citations, both of references and journals, alongside the co-occurrence of keywords, map out the thematic and disciplinary landscapes, pinpointing the most relevant sources and globally cited documents. The overlay network visualization of document citations further elucidates the thematic concentrations and evolutionary trajectories within the field. Additionally, this research identified key research gaps and outlined practical implications, pointing to areas that can be ripe for further exploration and innovation and can be helpful in practice. In the same way, the scientific production and collaboration country mappings draw a map of the global distribution and network of insurtech research and bring out more of its international scope and interdisciplinary nature. This bibliometric analysis does not just describe the current state of insurtech research but provides a strategic framework of how one may be able to orient themselves around future developments in this fast-evolving field.

  • References

    1. Abbas, A. F., Jusoh, A., Masod, A., & Ali, J. (2021). A Bibliometric Analysis of Publications on Social Media Influencers Using Vosviewer. Journal of Theoretical and Applied Information Technology, 99(23), 5662–5676.
    2. Agbo, F. J., Oyelere, S. S., Suhonen, J., & Tukiainen, M. (2021). Scientific production and thematic breakthroughs in smart learning environments: A bibliometric analysis. Smart Learning Environments, 8(1), 1. https://doi.org/10.1186/s40561-020-00145-4
    3. Ahmad, S., & Saxena, C. (2023). Artificial Intelligence and Blockchain Technology in Insurance Business. In Y. Singh, C. Verma, I. Zoltán, J. K. Chhabra, & P. K. Singh (Eds.), Proceedings of International Conference on Recent Innovations in Computing (pp. 61–71). Springer Nature Singapore.
    4. Amaliasita, M., & Rahayu, M. K. P. (2024). A bibliometric analysis – Green human resource management on green employee behavior. Multidisciplinary Reviews, 7(3). https://doi.org/10.31893/multirev.2024044
    5. Archambault, É., Campbell, D., Gingras, Y., & Larivière, V. (2009). Comparing bibliometric statistics obtained from the Web of Science and Scopus. Journal of the American Society for Information Science and Technology, 60(7), 1320–1326.
    6. Cao, S., Lyu, H., & Xu, X. (2020). InsurTech development: Evidence from Chinese media reports. Technological Forecasting and Social Change, 161, 120277.
    7. Chang, V. Y. L. (2023). Do InsurTech startups disrupt the insurance industry? Finance Research Letters, 57. https://doi.org/10.1016/j.frl.2023.104220
    8. Cortis, D., Debattista, J., Debono, J., & Farrell, M. (2019). InsurTech. In T. Lynn, J. G. Mooney, P. Rosati, & M. Cummins (Eds.), Disrupting Finance: FinTech and Strategy in the 21st Century (pp. 71–84). Springer International Publishing. https://doi.org/10.1007/978-3-030-02330-0_5
    9. Egghe, L., & Rousseau, R. (2002). Co-citation, bibliographic coupling and a characterization of lattice citation networks. Scientometrics, 55(3), 349–361. https://doi.org/10.1023/A:1020458612014
    10. Gavel, Y., & Iselid, L. (2008). Web of Science and Scopus: A journal title overlap study. Online Information Review, 32(1), 8–21.
    11. Guleria, D., & Kaur, G. (2021). Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019. Library Hi Tech, 39(4), 1001–1024. https://doi.org/10.1108/LHT-09-2020-0218
    12. Gupta, M., Bansal, R., Sharma, A., & Diego, N.-C. (2024). Technological Developments in the Insurance Industry: An Overview. The Application of Emerging Technology and Blockchain in the Insurance Industry, 3–20.
    13. Harzing, A.-W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics, 106, 787–804.
    14. Joseph, J., Thomas, B., Jose, J., & Pathak, N. (2024). Decoding the growth of multimodal learning: A bibliometric exploration of its impact and influence. Intelligent Decision Technologies, 18(1), 151–167. https://doi.org/10.3233/IDT-230727
    15. Kaur, B., Kaur, R., & Sood, K. (2023). Application of Blockchain in the Insurance Sector. In S. Grima, K. Sood, & E. Özen (Eds.), Contemporary Studies of Risks in Emerging Technology, Part A (pp. 173–181). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80455-562-020231012
    16. Kewal, T., & Saxena, C. (2024). Transition from Traditional Insurance Sector to InsurTech: Systematic Analysis and Future Research Directions. 785, 473–487. https://doi.org/10.1007/978-981-99-6544-1_36
    17. Komperda, R. (2017). Likert-type survey data analysis with R and RStudio. In ACS Symposium Series (Vol. 1260, pp. 91–116). https://doi.org/10.1021/bk-2017-1260.ch007
    18. Mahmoud, M. I., Surwanti, A., & Pribadi, F. (2024). Bibliometric analysis of trends and patterns in capital structure research: A decade-long review (2012-2022). Multidisciplinary Reviews, 7(2). https://doi.org/10.31893/multirev.2024025
    19. Merello, P., Barbera, A., & De la Poza, E. (2023). Analysing the determinant factors of the sustainability profile of Fintech and Insurtech companies. Journal of Cleaner Production, 421. https://doi.org/10.1016/j.jclepro.2023.138437
    20. Nandiyanto, A. B. D., & Al Husaeni, D. F. (2022). Bibliometric analysis of engineering research using vosviewer indexed by google scholar. Journal of Engineering Science and Technology, 17(2), 883–894.
    21. Rubin, T. H., Aas, T. H., & Williams, J. (2023). Big data and data ownership rights: The case of car insurance. Journal of Information Technology Teaching Cases, 13(1), 82–87. https://doi.org/10.1177/20438869221096859
    22. Saidat, Z., Abdelrahim, H. J., Alkhodary, D. A., & Qasaimeh, G. (2023). Impact of Open Big Data and Insurtech on Business Digitalization. 2023 International Conference on Business Analytics for Technology and Security (ICBATS), 1–5.
    23. Shamsuddin, J. N., Gan, C., & Anh, D. L. T. (2023). Bibliometric Analysis of InsurTech. Journal of Advanced Research in Applied Sciences and Engineering Technology, 30(2), 103–132. https://doi.org/10.37934/araset.30.2.103132
    24. Shi, C., Sun, Y., & Lyu, J. (2023). D&O insurance, technology independent directors, and R&D investment. International Review of Financial Analysis, 89. https://doi.org/10.1016/j.irfa.2023.102868
    25. Sosa Gómez, I., & Montes Pineda, Ó. (2023). What is an InsurTech? A scientific approach for defining the term. Risk Management and Insurance Review, 26(2), 125–173. https://doi.org/10.1111/rmir.12243
    26. Souza de Cursi, E. (2023). Some Tips to Use R and RStudio. In E. Souza de Cursi (Ed.), Uncertainty Quantification using R (pp. 1–108). Springer International Publishing. https://doi.org/10.1007/978-3-031-17785-9_1
    27. Stoeckli, E., Dremel, C., & Uebernickel, F. (2018). Exploring characteristics and transformational capabilities of InsurTech innovations to understand insurance value creation in a digital world. Electronic Markets, 28, 287–305.
    28. Suprapto, N., Abidah, A., Hidaayatullaah, H. N., & others. (2024). A decade of research in medical physics: A review and bibliometric study. Multidisciplinary Reviews, 7(4), 2024048–2024048.
    29. Thangavel, P., & Chandra, B. (2023). Two Decades of M-Commerce Consumer Research: A Bibliometric Analysis Using R Biblioshiny. Sustainability, 15(15), 11835. https://doi.org/10.3390/su151511835
    30. Thomas, B., Joseph, J., & Jose, J. (2023). Explorative Bibliometric Study of Medical Image Analysis: Unveiling Trends and Advancements. Scientific Visualization, 15(5), 35–49. https://doi.org/10.26583/sv.15.5.04
    31. Tomaszewski, R. (2023). Visibility, impact, and applications of bibliometric software tools through citation analysis. Scientometrics, 128(7), 4007–4028. https://doi.org/10.1007/s11192-023-04725-2
    32. Uyun, A., Sekarhati, D. K. S., Amastini, F., Nefiratika, A., Shihab, M. R., & Ranti, B. (2020). Implication of InsurTech to implementation IT decision domain perspective: The case study of insurance XYZ. 2020 6th International Conference on Computing Engineering and Design (ICCED), 1–6.
    33. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
    34. Verma, J., & Singh, A. (2023). Analysing the impact of emerging technologies on the existing insurance sector. In The Application of Emerging Technology and Blockchain in the Insurance Industry (pp. 21–28). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175671008&partnerID=40&md5=fbb5448758cfb7a8ccaf8ad395ea2a69
    35. Verma, J., & Singh, A. (2024). Analysing the Impact of Emerging Technologies on the Existing Insurance Sector. In The Application of Emerging Technology and Blockchain in the Insurance Industry (pp. 21–28). River Publishers.
    36. Waghmare, P. (2021). Bibliometric Analysis of Global Research Trends on E-Waste Management from Scopus Database seen through Biblioshiny. In Library Philosophy and Practice (Vol. 2021, pp. 1–16).
    37. Wang, Q. (2021). THE IMPACT OF INSURTECH ON CHINESE INSURANCE INDUSTRY. 2020 International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI2020, 187, 30–35. https://doi.org/10.1016/j.procs.2021.04.030
    38. White, H. D. (2015). Co-cited author retrieval and relevance theory: Examples from the humanities. Scientometrics, 102(3), 2275–2299. https://doi.org/10.1007/s11192-014-1483-4
    39. Xie, M., & Li, S. (2020). Bibliometric and Visualized Analysis of Visual Brand Identity of Sports Team Based on Web of Science and CiteSpace. In Advances in Intelligent Systems and Computing: Vol. 1190 AISC (pp. 171–181). https://doi.org/10.1007/978-3-030-49829-0_13
    40. Yan, T. C., Schulte, P., & Chuen, D. L. K. (2018). InsurTech and FinTech: Banking and insurance enablement. Handbook of Blockchain, Digital Finance, and Inclusion, Volume 1, 249–281.
    41. Yu, T.-W., Wang, A.-P., Tseng, L.-M., & Tsao, W.-M. (2021). A Preliminary Study of the Impact of Blockchain Technology on the Application Level of Insurance Industry. 2021 IEEE International Conference on Social Sciences and Intelligent Management (SSIM), 1–5. https://doi.org/10.1109/SSIM49526.2021.9555203

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

John, J., Joseph, M., Joseph, S., Jacob, G., Rose, N., & Thomas, S. (2024). Insurtech research dynamics: A bibliometric review of technological innovations in insurance. Multidisciplinary Reviews, 7(12), 2024288. https://doi.org/10.31893/multirev.2024288
  • Article viewed - 640
  • PDF downloaded - 411