• Abstract

    Oral hard and soft tissue engineering using bioactive substances that trigger other proteins or the immune system is the main focus of biomaterials research. Long-lasting tissues and tissue components develop due to this natural ground ingredient. Bioactive glass (BAG) is one type of biomaterial that is used nowadays. BAG is utilized in soft-tissue restoration, orthopaedics, air abrasion, pulp capping, root canal therapy, dental implant coating materials, mineralising agents and dental restorative materials, among other medical specialities, due to its bioactive properties, which make it suitable for use in a range of clinical settings, including dentistry and medicine, where issues with complex tissue regeneration arise. Bioglass is used in dentistry as permanent restoration, intracanal medication or temporary restorative. This article extensively explores the applications of Bioglass in dentistry, explicitly focusing on elucidating its mechanisms of action and biological effects. Emphasizing the uniqueness of Bioglass, the article underscores its role as a transformative tool in modern dental care.

  • References

    1. Boccaccini AR, Brauer DS, Hupa L, editors: Bioactive Glasses: Fundamentals, Technology and Applications. Royal Society of Chemistry: Cambridge; 2016. 10.1039/9781782622017
    2. Sawant K, Pawar A: Bioactive glass in dentistry: A systematic review. Saudi J Oral Sci. 2020, 7:3. 10.4103/sjos.SJOralSci_56_19
    3. Hench LL: The story of Bioglass®. J Mater Sci: Mater Med. 2006, 17:967–78. 10.1007/s10856-006-0432-z
    4. Navarro M, Serra T: Biomimetic mineralization of ceramics and glasses. In: Biomineralization and Biomaterials. Elsevier; 2016. 315–38.10.1016/B978-1-78242-338-6.00011-9
    5. Carvalho SM, Moreira CDF, Oliveira ACX, Oliveira AAR, Lemos EMF, Pereira MM: Bioactive glass nanoparticles for periodontal regeneration and applications in dentistry. In: Nanobiomaterials in Clinical Dentistry. Elsevier; 2019. 351–83.10.1016/B978-0-12-815886-9.00015-2
    6. Choe Y-E, Kim Y-J, Jeon S-J, et al.: Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dental Materials. 2022, 38:363–75. 10.1016/j.dental.2021.12.019
    7. Skallevold HE, Rokaya D, Khurshid Z, Zafar MS: Bioactive Glass Applications in Dentistry. Int J Mol Sci. 2019, 20:5960. 10.3390/ijms20235960
    8. Najeeb S, Khurshid Z, Zafar MS, et al.: Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics. Int J Mol Sci. 2016, 17:1134. 10.3390/ijms17071134
    9. Zafar MS, Khurshid Z, Almas K: Oral tissue engineering progress and challenges. Tissue Eng Regen Med. 2015, 12:387–97. 10.1007/s13770-015-0030-6
    10. Baino F, Hamzehlou S, Kargozar S: Bioactive Glasses: Where Are We and Where Are We Going? J Funct Biomater. 2018, 9:25. 10.3390/jfb9010025
    11. Jones JR, Brauer DS, Hupa L, Greenspan DC: Bioglass and Bioactive Glasses and Their Impact on Healthcare. Int J of Appl Glass Sci. 2016, 7:423–34. 10.1111/ijag.12252
    12. Simila HO, Boccaccini AR: Sol-gel synthesis of lithium doped mesoporous bioactive glass nanoparticles and tricalcium silicate for restorative dentistry: Comparative investigation of physico-chemical structure, antibacterial susceptibility and biocompatibility. Front Bioeng Biotechnol. 2023, 11:1065597. 10.3389/fbioe.2023.1065597
    13. Saqib S, Faryad S, Afridi MI, et al.: Bimetallic Assembled Silver Nanoparticles Impregnated in Aspergillus fumigatus Extract Damage the Bacterial Membrane Surface and Release Cellular Contents. Coatings. 2022, 12:1505. 10.3390/coatings12101505
    14. Saqib S, Nazeer A, Ali M, et al.: Catalytic potential of endophytes facilitates synthesis of biometallic zinc oxide nanoparticles for agricultural application. Biometals. 2022, 35:967–85. 10.1007/s10534-022-00417-1
    15. Arun D, Adikari Mudiyanselage D, Gulam Mohamed R, Liddell M, Monsur Hassan NM, Sharma D: Does the Addition of Zinc Oxide Nanoparticles Improve the Antibacterial Properties of Direct Dental Composite Resins? A Systematic Review. Materials. 2020, 14:40. 10.3390/ma14010040
    16. Oztekin F, Gurgenc T, Dundar S, et al.: In Vivo Evaluation of the Effects of B-Doped Strontium Apatite Nanoparticles Produced by Hydrothermal Method on Bone Repair. JFB. 2022, 13:110. 10.3390/jfb13030110
    17. Chen QZ, Xu JL, Yu LG, Fang XY, Khor KA: Spark plasma sintering of sol–gel derived 45S5 Bioglass®-ceramics: Mechanical properties and biocompatibility evaluation. Materials Science and Engineering: C. 2012, 32:494–502. 10.1016/j.msec.2011.11.023
    18. Peitl Filho O, LaTorre GP, Hench LL: Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res. 1996, 30:509–14. 10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T
    19. Prasad S: CRYSTALLIZATION AND MECHANICAL PROPERTIES OF (45S5-HA) BIOCOMPOSITE FOR BIOMEDICAL IMPLANTATION. Ceramics - Silikaty. 2017, 378–84. 10.13168/cs.2017.0039
    20. Wilson J, Pigott GH, Schoen FJ, Hench LL: Toxicology and biocompatibility of bioglasses. J Biomed Mater Res. 1981, 15:805–17. 10.1002/jbm.820150605
    21. Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF: Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. Materials (Basel). 2018, 11:2530. 10.3390/ma11122530
    22. Midha S, Kim TB, van den Bergh W, Lee PD, Jones JR, Mitchell CA: Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater. 2013, 9:9169–82. 10.1016/j.actbio.2013.07.014
    23. Liljestrand JM, Mäntylä P, Paju S, et al.: Association of Endodontic Lesions with Coronary Artery Disease. J Dent Res. 2016, 95:1358–65. 10.1177/0022034516660509
    24. Farzadi A, Bakhshi F, Solati-Hashjin M, Asadi-Eydivand M, Osman NAA: Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization. Ceramics International. 2014, 40:6021–9. 10.1016/j.ceramint.2013.11.051
    25. https://link.springer.com/chapter/10.1007/978-3-642-41332-2_4#auth-Nasour-Bagheri: Desynchronization and Traceability Attacks on RIPTA-DA Protocol.
    26. Wetzel R, Eckardt O, Biehl P, Brauer DS, Schacher FH: Effect of poly(acrylic acid) architecture on setting and mechanical properties of glass ionomer cements. Dental Materials. 2020, 36:377–86. 10.1016/j.dental.2020.01.001
    27. Fleming G: Influence of powder/liquid mixing ratio on the performance of a restorative glass-ionomer dental cement. Biomaterials. 2003, 24:4173–9. 10.1016/S0142-9612(03)00301-6
    28. Osorio R, Cabello I, Medina-Castillo AL, Osorio E, Toledano M: Zinc-modified nanopolymers improve the quality of resin–dentin bonded interfaces. Clin Oral Invest. 2016, 20:2411–20. 10.1007/s00784-016-1738-y
    29. Slomkowski S, Alemán JV, Gilbert RG, et al.: Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011). Pure and Applied Chemistry. 2011, 83:2229–59. 10.1351/PAC-REC-10-06-03
    30. Medina-Castillo AL: Thermodynamic Principles of Precipitation Polymerization and Role of Fractal Nanostructures in the Particle Size Control. Macromolecules. 2020, 53:5687–700. 10.1021/acs.macromol.0c00973
    31. Medina-Castillo AL, Fernandez-Sanchez JF, Segura-Carretero A, Fernandez-Gutierrez A: Micrometer and Submicrometer Particles Prepared by Precipitation Polymerization: Thermodynamic Model and Experimental Evidence of the Relation between Flory’s Parameter and Particle Size. Macromolecules. 2010, 43:5804–13. 10.1021/ma100841c
    32. Osorio R, Alfonso-Rodríguez CA, Medina-Castillo AL, Alaminos M, Toledano M: Bioactive Polymeric Nanoparticles for Periodontal Therapy. PLoS ONE. 2016, 11:e0166217. 10.1371/journal.pone.0166217
    33. Alam MK, Alsuwailem R, Alfawzan AA: Antibacterial activity and bond strength of silver nanoparticles modified orthodontic bracket adhesive: A systematic review and meta-analysis of in-vitro and in-vivo studies. International Journal of Adhesion and Adhesives. 2022, 113:103040.
    34. Ravi ND, Balu R, Sampath Kumar TS: Strontium‐Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties. J Am Ceram Soc. 2012, 95:2700–8. 10.1111/j.1551-2916.2012.05262.x
    35. Wang Y-L, Chang H-H, Chiang Y-C, Lin C-H, Lin C-P: Strontium ion can significantly decrease enamel demineralization and prevent the enamel surface hardness loss in acidic environment. Journal of the Formosan Medical Association. 2019, 118:39–49. 10.1016/j.jfma.2018.01.001
    36. Curzon MEJ, Losee FL: Dental caries and trace element composition of whole human enamel: Western United States. The Journal of the American Dental Association. 1978, 96:819–22. 10.14219/jada.archive.1978.0198
    37. Athanassouli TM, Papastathopoulos DS, Apostolopoulos AX: Dental Caries and Strontium Concentration in Drinking Water and Surface Enamel. J Dent Res. 1983, 62:989–91. 10.1177/00220345830620091501
    38. Rajendran R, Antony DP, Paul P, Ashik P M, M A, Hameed H: A Systematic Review on the Effect of Strontium-Doped Nanohydroxyapatite in Remineralizing Early Caries Lesion. Cureus. Published Online First: 26 August 2023. 10.7759/cureus.44176
    39. Zhang K, Alaohali A, Sawangboon N, Sharpe PT, Brauer DS, Gentleman E: A comparison of lithium-substituted phosphate and borate bioactive glasses for mineralised tissue repair. Dental Materials. 2019, 35:919–27. 10.1016/j.dental.2019.03.008
    40. Clément-Lacroix P, Ai M, Morvan F, et al.: Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA. 2005, 102:17406–11. 10.1073/pnas.0505259102
    41. Han P, Wu C, Chang J, Xiao Y: The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials. 2012, 33:6370–9. 10.1016/j.biomaterials.2012.05.061
    42. Ali M, Okamoto M, Komichi S, Watanabe M, Huang H, Takahashi Y, Hayashi M: Lithium-containing surface pre-reacted glass fillers enhance hDPSC functions and induce reparative dentin formation in a rat pulp capping model through activation of Wnt/β-catenin signaling. Acta Biomaterialia. 2019, 96:594–604. 10.1016/j.actbio.2019.06.016
    43. Lieb J: The immunostimulating and antimicrobial properties of lithium and antidepressants. Journal of Infection. 2004, 49:88–93. 10.1016/j.jinf.2004.03.006
    44. Mao Y, Liao J, Wu M, et al.: Preparation of nano spherical bioglass by alkali-catalyzed mixed template. Mater Res Express. 2020, 7:105202. 10.1088/2053-1591/abc373
    45. Oztekin F, Gurgenc T, Dundar S, et al.: In Vivo Effects of Nanotechnologically Synthesized and Characterized Fluoridated Strontium Apatite Nanoparticles in the Surgical Treatment of Endodontic Bone Lesions. Crystals. 2022, 12:1192. 10.3390/cryst12091192
    46. Wang Q, Li P, Tang P, et al.: Experimental and simulation studies of strontium/fluoride-codoped hydroxyapatite nanoparticles with osteogenic and antibacterial activities. Colloids and Surfaces B: Biointerfaces. 2019, 182:110359. 10.1016/j.colsurfb.2019.110359
    47. Jiang X, Zhao Y, Wang C, Sun R, Tang Y: Effects of physico-chemical properties of ions-doped hydroxyapatite on adsorption and release performance of doxorubicin as a model anticancer drug. Materials Chemistry and Physics. 2022, 276:125440. 10.1016/j.matchemphys.2021.125440
    48. Karunakaran G, Cho E-B, Kumar GS, et al.: Citric Acid-Mediated Microwave-Hydrothermal Synthesis of Mesoporous F-Doped HAp Nanorods from Bio-Waste for Biocidal Implant Applications. Nanomaterials (Basel). 2022, 12:315. 10.3390/nano12030315
    49. Tanweer T, Rana NF, Saleem I, et al.: Dental Composites with Magnesium Doped Zinc Oxide Nanoparticles Prevent Secondary Caries in the Alloxan-Induced Diabetic Model. IJMS. 2022, 23:15926. 10.3390/ijms232415926
    50. Huang L, Li D-Q, Lin Y-J, Wei M, Evans DG, Duan X: Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem. 2005, 99:986–93. 10.1016/j.jinorgbio.2004.12.022
    51. Leung YH, Ng AMC, Xu X, et al.: Mechanisms of Antibacterial Activity of MgO: Non‐ROS Mediated Toxicity of MgO Nanoparticles Towards Escherichia coli. Small. 2014, 10:1171–83. 10.1002/smll.201302434
    52. Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L: Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014, 451:172–80. 10.1016/j.colsurfa.2014.03.035
    53. de Souza GL, Magalhães TEA, Freitas GAN, Lemus NXA, Barbosa GL de R, Silva ACA, Moura CCG: Calcium-doped zinc oxide nanocrystals as an innovative intracanal medicament: a pilot study. Restor Dent Endod. 2022, 47:e38. 10.5395/rde.2022.47.e38
    54. Barbeck M, Alkildani S, Mandlule A, Radenković M, Najman S, Stojanović S, Jung O, Ren Y, Cai B, Görke O, Rimashevskiy D. In vivo analysis of the immune response to strontium-and copper-doped bioglass. in vivo. 2022 Sep 1;36(5):2149-65.
    55. Zhu DY, Lu B, Yin JH, Ke QF, Xu H, Zhang CQ, Guo YP, Gao YS. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo. International Journal of nanomedicine. 2019 Feb 11:1085-100.
    56. de Souza LP, Lopes JH, Ferreira FV, Martin RA, Bertran CA, Camilli JA. Evaluation of effectiveness of 45S5 bioglass doped with niobium for repairing critical‐sized bone defect in in vitro and in vivo models. Journal of Biomedical Materials Research Part A. 2020 Mar;108(3):446-57.
    57. Malavasi G, Salvatori R, Zambon A, Lusvardi G, Rigamonti L, Chiarini L, Anesi A. Cytocompatibility of potential bioactive cerium-doped glasses based on 45S5. Materials. 2019 Feb 16;12(4):594.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Multidisciplinary Reviews

How to cite

Bhojwani, P., Ikhar, A., Patel, A., Chandak, M., Bhopatkar, J., Manik, K., Kurundkar, S., & Paryani, M. (2024). Recent advances in antimicrobial and biosynthesis properties of bioglass and nanoparticles: A narrative review. Multidisciplinary Reviews, (| Accepted Articles). Retrieved from https://malque.pub/ojs/index.php/mr/article/view/3372
  • Article viewed - 27