• Abstract

    Oral hard and soft tissue engineering using bioactive substances that trigger other proteins or the immune system is the main focus of biomaterials research. Long-lasting tissues and tissue components develop due to this natural ground ingredient. Bioactive glass (BAG) is one type of biomaterial that is currently used. BAG is utilized in soft-tissue restoration, orthopedics, air abrasion, pulp capping, root canal therapy, dental implant coating materials, mineralizing agents and dental restorative materials, among other medical specialities, due to its bioactive properties, which make it suitable for use in a range of clinical settings, including dentistry and medicine, where issues with complex tissue regeneration arise.Bioglass is used in dentistry for permanent restoration, intracanal medication or temporary restorative purposes. This article extensively explores the applications of Bioglass in dentistry, explicitly focusing on elucidating its mechanisms of action and biological effects. Emphasizing the uniqueness of Bioglass, this article underscores its role as a transformative tool in modern dental care.

  • References

    1. Alam, M. K., Alsuwailem, R., & Alfawzan, A. A. (2022). Antibacterial activity and bond strength of silver nanoparticles modified orthodontic bracket adhesive: A systematic review and meta-analysis of in-vitro and in-vivo studies. International Journal of Adhesion and Adhesives, 113, 103040.
    2. Ali, M., Okamoto, M., Komichi, S., Watanabe, M., Huang, H., Takahashi, Y., & Hayashi, M. (2019). Lithium-containing surface pre-reacted glass fillers enhance hDPSC functions and induce reparative dentin formation in a rat pulp capping model through activation of Wnt/β-catenin signaling. Acta Biomaterialia, 96, 594–604. https://doi.org/10.1016/j.actbio.2019.06.016
    3. Athanassouli, T. M., Papastathopoulos, D. S., & Apostolopoulos, A. X. (1983). Dental Caries and Strontium Concentration in Drinking Water and Surface Enamel. Journal of Dental Research, 62(9), 989–991. https://doi.org/10.1177/00220345830620091501
    4. Arun, D., Adikari Mudiyanselage, D., Gulam Mohamed, R., Liddell, M., Monsur Hassan, N. M., & Sharma, D. (2020). Does the Addition of Zinc Oxide Nanoparticles Improve the Antibacterial Properties of Direct Dental Composite Resins? A Systematic Review. Materials, 14(1), 40. https://doi.org/10.3390/ma14010040
    5. Bagheri, N., Gauravaram, P., Safkhani, M., & Sanadhya, S. K. (2013). Desynchronization and Traceability Attacks on RIPTA-DA Protocol. In M. Hutter & J.-M. Schmidt (Eds.), Radio Frequency Identification (pp. 57–68). Springer. https://doi.org/10.1007/978-3-642-41332-2_4
    6. Baino, F., Hamzehlou, S., & Kargozar, S. (2018). Bioactive Glasses: Where Are We and Where Are We Going? Journal of Functional Biomaterials, 9(1), 25. https://doi.org/10.3390/jfb9010025
    7. Boccaccini, A. R., Brauer, D. S., & Hupa, L. (Eds.). (2016). Bioactive Glasses: Fundamentals, Technology and Applications. Royal Society of Chemistry. https://doi.org/10.1039/9781782622017
    8. Carvalho, S. M., Moreira, C. D. F., Oliveira, A. C. X., Oliveira, A. A. R., Lemos, E. M. F., & Pereira, M. M. (2019). Bioactive glass nanoparticles for periodontal regeneration and applications in dentistry. In Nanobiomaterials in Clinical Dentistry (pp. 351–383). Elsevier. https://doi.org/10.1016/B978-0-12-815886-9.00015-2
    9. Chen, Q. Z., Xu, J. L., Yu, L. G., Fang, X. Y., & Khor, K. A. (2012). Spark plasma sintering of sol–gel derived 45S5 Bioglass®-ceramics: Mechanical properties and biocompatibility evaluation. Materials Science and Engineering: C, 32(3), 494–502. https://doi.org/10.1016/j.msec.2011.11.023
    10. Choe, Y.-E., Kim, Y.-J., Jeon, S.-J., Ahn, J.-Y., Park, J.-H., Dashnyam, K., Mandakhbayar, N., Knowles, J. C., Kim, H.-W., Jun, S.-K., Lee, J.-H., & Lee, H.-H. (2022). Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dental Materials, 38(2), 363–375. https://doi.org/10.1016/j.dental.2021.12.019
    11. Clément-Lacroix, P., Ai, M., Morvan, F., Roman-Roman, S., Vayssière, B., Belleville, C., Estrera, K., Warman, M. L., Baron, R., & Rawadi, G. (2005). Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proceedings of the National Academy of Sciences, 102(48), 17406–17411. https://doi.org/10.1073/pnas.0505259102
    12. Curzon, M. E. J., & Losee, F. L. (1978). Dental caries and trace element composition of whole human enamel: Western United States. The Journal of the American Dental Association, 96(5), 819–822. https://doi.org/10.14219/jada.archive.1978.0198
    13. Farzadi, A., Bakhshi, F., Solati-Hashjin, M., Asadi-Eydivand, M., & Osman, N. A. A. (2014). Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization. Ceramics International, 40(4), 6021–6029. https://doi.org/10.1016/j.ceramint.2013.11.051
    14. Fernandes, H. R., Gaddam, A., Rebelo, A., Brazete, D., Stan, G. E., & Ferreira, J. M. F. (2018). Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. Materials (Basel, Switzerland), 11(12), 2530. https://doi.org/10.3390/ma11122530
    15. Fleming, G. (2003). Influence of powder/liquid mixing ratio on the performance of a restorative glass-ionomer dental cement. Biomaterials, 24(23), 4173–4179. https://doi.org/10.1016/S0142-9612(03)00301-6
    16. Han, P., Wu, C., Chang, J., & Xiao, Y. (2012). The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials, 33(27), 6370–6379. https://doi.org/10.1016/j.biomaterials.2012.05.061
    17. Hench, L. L. (2006). The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11), 967–978. https://doi.org/10.1007/s10856-006-0432-z
    18. Huang, L., Li, D.-Q., Lin, Y.-J., Wei, M., Evans, D. G., & Duan, X. (2005). Controllable preparation of Nano-MgO and investigation of its bactericidal properties. Journal of Inorganic Biochemistry, 99(5), 986–993. https://doi.org/10.1016/j.jinorgbio.2004.12.022
    19. Jiang, X., Zhao, Y., Wang, C., Sun, R., & Tang, Y. (2022). Effects of physico-chemical properties of ions-doped hydroxyapatite on adsorption and release performance of doxorubicin as a model anticancer drug. Materials Chemistry and Physics, 276, 125440. https://doi.org/10.1016/j.matchemphys.2021.125440
    20. Jones, J. R., Brauer, D. S., Hupa, L., & Greenspan, D. C. (2016). Bioglass and Bioactive Glasses and Their Impact on Healthcare. International Journal of Applied Glass Science, 7(4), 423–434. https://doi.org/10.1111/ijag.12252
    21. Karunakaran, G., Cho, E.-B., Kumar, G. S., Kolesnikov, E., Sudha, K. G., Mariyappan, K., Han, A., & Choi, S. S. (2022). Citric Acid-Mediated Microwave-Hydrothermal Synthesis of Mesoporous F-Doped HAp Nanorods from Bio-Waste for Biocidal Implant Applications. Nanomaterials (Basel, Switzerland), 12(3), 315. https://doi.org/10.3390/nano12030315
    22. Leung, Y. H., Ng, A. M. C., Xu, X., Shen, Z., Gethings, L. A., Wong, M. T., Chan, C. M. N., Guo, M. Y., Ng, Y. H., Djurišić, A. B., Lee, P. K. H., & Chan, W. K. (2016). Mechanisms of antibacterial activity of MgO: Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small (Weinheim an Der Bergstrasse, Germany), 12(9), 1170–1184. https://doi.org/10.1002/smll.201502663
    23. Liu, J., Jin, T. C., Chang, S., Imazato, S., Shen, Y., & Gao, S. (2020). Antibacterial properties and associated mechanisms of the use of zinc in dental alloys: A review. Dental Materials, 36(4), 451–467. https://doi.org/10.1016/j.dental.2020.01.018
    24. Mahant, S., Kumar, S., Kaushik, D., & Chander Sharma, P. (2022). Biodegradable polymers, nanomaterials, and bone-targeted drug delivery. In R. M. Parihar & D. Kaushik (Eds.), Bone and Cartilage Regeneration (pp. 187–218). Elsevier. https://doi.org/10.1016/B978-0-12-821749-8.00008-1
    25. Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42(6), 551–555. https://doi.org/10.1016/j.injury.2011.03.031
    26. Nam, E., Shih, P., Page, K. N., Chen, W., & Jin, S. (2013). Identification of Colloidal ZnO Nanoparticles from ZnO Binding Peptides: Electrostatic and ZnO-Binding Properties. Langmuir, 29(2), 578–586. https://doi.org/10.1021/la303894g
    27. Ni, S., Chang, J., Chou, L., & Zhai, W. (2007). Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 80B(1), 174–183. https://doi.org/10.1002/jbm.b.30566
    28. O'Donnell, M. D., & Hill, R. G. (2010). Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomaterialia, 6(7), 2382–2385. https://doi.org/10.1016/j.actbio.2009.12.003
    29. Ojeda-García, S., Ortiz-Fuentes, N., & Martín-de León, J. (2022). Dental resins with nanostructured magnesium oxide for infection control. Materials Science & Engineering C, 126, 112130. https://doi.org/10.1016/j.msec.2021.112130
    30. Oltuszak-Walczak, E., & Walczak, P. (2021). Development of Zn-Doped HAp nanoparticles and its potential in antimicrobial therapies. Nanomaterials, 11(8), 2019. https://doi.org/10.3390/nano11082019
    31. Parmar, D., Ali, S. S., Bhattacharjee, D., & Rath, M. (2022). Recent Progress in Nanomaterials for Endodontic Applications: A Review. Materials, 15(15), 5190. https://doi.org/10.3390/ma15155190
    32. Ramesh, S., Tan, C. Y., Bhaduri, S. B., & Teng, W. D. (2009). Rapid densification of nanocrystalline CaSiO3 ceramics by the microwave sintering technique and its properties. Ceramics International, 35(5), 1945–1952. https://doi.org/10.1016/j.ceramint.2008.10.013
    33. Ratheesh, G., Venugopal, J. R., & Chennazhi, K. P. (2015). Effectiveness of antimicrobial peptide incorporated nanofibrous scaffold for the prevention of implant-associated infections: An in vitro and in vivo study. Colloids and Surfaces B: Biointerfaces, 126, 546–552. https://doi.org/10.1016/j.colsurfb.2014.12.027
    34. Rehman, R., Islam, S., Sultan, M., Akhter, Z., & Akhtar, M. N. (2022). Current status of nanotechnology-based biomaterials for bone tissue engineering and regenerative medicine: Nanomaterial chemistry and applications. In M. Izadifar, G. Asadpour, & A. J. Moshfegh (Eds.), Handbook of Research on Tribology in Coatings and Surface Treatment (pp. 187–208). IGI Global. https://doi.org/10.4018/978-1-7998-9941-1.ch009
    35. Riaz, A., Mahmood, N., & Jabeen, N. (2022). Bioactive ceramics and glasses. In Comprehensive Biomaterials II (Vol. 8, pp. 34–54). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.10083-9
    36. Rivadeneira, J., & Autrique, L. (2022). Toxicological and Pharmacological Considerations for the Design of Iron Oxide-Based Nanomaterials. In Handbook of Research on Green Synthesis and Applications of Nanomaterials (pp. 135–160). IGI Global. https://doi.org/10.4018/978-1-7998-8820-0.ch006
    37. Santos, C., & Knowles, J. C. (2021). Strontium-Doped Bioactive Glasses as Bone Substitutes. In I. Pashkuleva & C. Sousa (Eds.), Biomaterials for Bone Regeneration (pp. 351–379). Elsevier. https://doi.org/10.1016/B978-0-12-820243-2.00015-3
    38. Sculean, A., Chapple, I. L. C., & Giannobile, W. V. (2015). Wound models for periodontal and bone regeneration: the role of biologic research. Periodontology 2000, 68(1), 7–20. https://doi.org/10.1111/prd.12068
    39. Van der Veen, M. H., Attin, R., Schwestka-Polly, R., & Wiechmann, D. (2000). Caries-preventive effect of ozone in a remineralizing environment. Journal of Dentistry, 28(8), 573–578. https://doi.org/10.1016/S0300-5712(00)00044-0
    40. Xie, X., Wang, Z., Zhou, W., Bai, L., Xie, Y., & Li, J. (2017). Review of implant materials for sustained release of anti-inflammatory agents. Journal of Biomedical Materials Research Part A, 105(4), 956–967. https://doi.org/10.1002/jbm.a.35980
    41. Yan, L., Meier, M. R., Geiger, M. A., Zhang, B., Chowdhury, N. R., Li, Y., Boccaccini, A. R., & Xin, H. (2022). Multi-scale fibrous scaffolds with gradient content of Sr-Bioglass® for bone regeneration. Materials Science and Engineering: C, 130, 112471. https://doi.org/10.1016/j.msec.2021.112471
    42. Zheng, K., & Boccaccini, A. R. (2022). Sol-gel processing of bioactive glasses: A review. Advanced Colloid and Interface Science, 300, 102599. https://doi.org/10.1016/j.cis.2021.102599
    43. Zhou, H., & Lee, J. (2011). Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 7(7), 2769–2781. https://doi.org/10.1016/j.actbio.2011.03.019

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Bhojwani, P., Ikhar, A., Patel, A., Chandak, M., Bhopatkar, J., Manik, K., Kurundkar, S., & Paryani, M. (2024). Recent advances in antimicrobial and biosynthesis properties of bioglass and nanoparticles: A narrative review. Multidisciplinary Reviews, 7(12), 2024286. https://doi.org/10.31893/multirev.2024286
  • Article viewed - 315
  • PDF downloaded - 189