• Abstract

    This bibliometric study delves into the rapidly evolving domain of robo-advisors—digital platforms that offer automated, algorithm-driven financial planning services with minimal human intervention. Utilizing a robust dataset extracted from Scopus, the research employs the PRISMA flow chart methodology for meticulous screening, inclusion, and exclusion of relevant studies. Advanced bibliometric analysis tools such as Biblioshiny, VOSviewer, and CiteSpace are employed to conduct the analysis, facilitating a multifaceted examination of the literature. The findings of this study are extensive and informative, covering various aspects of the research on robo-advisors. It highlights the annual scientific production, identifying trends and growth patterns within the field. The study also spotlights the most productive authors and sources, shedding light on the leading contributors to the discourse on robo-advisors. Furthermore, it provides insights into the most globally cited documents, author cocitations, and keyword co-occurrences, revealing the core themes and discussions shaping this area of study. Significantly, the research identifies keywords with the strongest citation bursts and offers network visualizations of cited authors, showcasing the dynamic interactions within the academic community. Timezone and timeline views of cited journals and country collaborations offer a geographical and temporal perspective on the research landscape. Through these analyses, the study uncovers identified research gaps and practical implications, guiding future investigations and the practical application of robo-advisors in the financial industry.

  • References

    1. Afaq, A., & Gaur, L. (2021). The Rise of Robots to Help Combat Covid-19. In Proceedings of International Conference on Technological Advancements and Innovations, ICTAI 2021 (pp. 69–74). https://doi.org/10.1109/ICTAI53825.2021.9673256
    2. Ali, I., Balta, M., & Papadopoulos, T. (2022). Social media platforms and social enterprise: Bibliometric analysis and systematic review. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2022.102510
    3. Amaliasita, M., & Rahayu, M. K. P. (2024). A bibliometric analysis – Green human resource management on green employee behavior. Multidisciplinary Reviews, 7(3). https://doi.org/10.31893/multirev.2024044
    4. Archambault, É., Campbell, D., Gingras, Y., & Larivière, V. (2009). Comparing bibliometric statistics obtained from the Web of Science and Scopus. Journal of the American Society for Information Science and Technology, 60(7), 1320–1326.
    5. Au, C.-D., Klingenberger, L., Svoboda, M., & Frère, E. (2021). Business model of sustainable robo-advisors: Empirical insights for practical implementation. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132313009
    6. Babu, S., & Thomas, B. (2022). Bibliometric Analysis and Visualization of Scientific Literature on Random Forest Regression. Scientific Visualization, 14(5).
    7. Baker, T., & Dellaert, B. (2018). Regulating robo advice across the financial services industry. Iowa Law Review, 103(2), 713–750.
    8. Belanche, D., Casaló, L. V., Flavián, M., & Loureiro, S. M. C. (n.d.). Benefit versus risk: A behavioral model for using robo-advisors. The Service Industries Journal, 1–28. https://doi.org/10.1080/02642069.2023.2176485
    9. Belanche, D., Casaló, L. V., Flavián, M., & Loureiro, S. M. C. (2023a). Benefit versus risk: A behavioral model for using robo-advisors. Service Industries Journal. https://doi.org/10.1080/02642069.2023.2176485
    10. Belanche, D., Casaló, L. V., Flavián, M., & Loureiro, S. M. C. (2023b). Benefit versus risk: A behavioral model for using robo-advisors. Service Industries Journal. https://doi.org/10.1080/02642069.2023.2176485
    11. Brenner, L., & Meyll, T. (2020a). Robo-advisors: A substitute for human financial advice? Journal of Behavioral and Experimental Finance, 25. https://doi.org/10.1016/j.jbef.2020.100275
    12. Brenner, L., & Meyll, T. (2020b). Robo-advisors: A substitute for human financial advice? Journal of Behavioral and Experimental Finance, 25. https://doi.org/10.1016/j.jbef.2020.100275
    13. Brunen, A.-C., & Laubach, O. (2022). Do sustainable consumers prefer socially responsible investments? A study among the users of robo advisors. Journal of Banking and Finance, 136. https://doi.org/10.1016/j.jbankfin.2021.106314
    14. Cardillo, G., & Chiappini, H. (2024). Robo-advisors: A systematic literature review. Finance Research Letters, 62. https://doi.org/10.1016/j.frl.2024.105119
    15. Chen, S., Ding, Q., & Liang, K. (2023). Research on Green Port Based on LDA Model and CiteSpace Bibliometric Analysis. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 12725). https://doi.org/10.1117/12.2679115
    16. Cull, M. (2022). The Growing Role of FinTech and Robo-advisors. In De Gruyter Handbook of Personal Finance (pp. 529–550). https://doi.org/10.1515/9783110727692-030
    17. Deng, B., & Chau, M. (2021). Anthropomorphized financial robo-advisors and investment advice-taking behavior. 27th Annual Americas Conference on Information Systems, AMCIS 2021. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118625396&partnerID=40&md5=38fd0a0a65ac096324a9903636d13a2b
    18. Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 1809–1831. https://doi.org/10.1007/s11192-015-1645-z
    19. Figà-Talamanca, G., Tanzi, P. M., & DUrzo, E. (2022). Robo-advisor acceptance: Do gender and generation matter? PLoS ONE, 17(6). https://doi.org/10.1371/journal.pone.0269454
    20. Fischer, M. (2021). Fintech business models: Applied canvas method and analysis of venture capital rounds. In Fintech Business Models: Applied Canvas Method and Analysis of Venture Capital Rounds. https://doi.org/10.1515/9783110704907
    21. Gavel, Y., & Iselid, L. (2008). Web of Science and Scopus: A journal title overlap study. Online Information Review, 32(1), 8–21.
    22. Glaser, F., Iliewa, Z., Jung, D., & Weber, M. (2019). Towards designing robo-advisors for unexperienced investors with experience sampling of time-series data. In Lecture Notes in Information Systems and Organisation (Vol. 29, pp. 133–138). https://doi.org/10.1007/978-3-030-01087-4_16
    23. Godin, B. (2006). On the origins of bibliometrics. Scientometrics, 68(1), 109–133. https://doi.org/10.1007/s11192-006-0086-0
    24. Guo, L. (2020). Regulating Investment Robo-Advisors in China: Problems and Prospects. European Business Organization Law Review, 21(1), 69–99. https://doi.org/10.1007/s40804-020-00187-8
    25. Harzing, A.-W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics, 106, 787–804.
    26. Hong, X., Pan, L., Gong, Y., & Chen, Q. (2023). Robo-advisors and investment intention: A perspective of value-based adoption. Information and Management, 60(6). https://doi.org/10.1016/j.im.2023.103832
    27. Hyun Baek, T., & Kim, M. (2023). Ai robo-advisor anthropomorphism: The impact of anthropomorphic appeals and regulatory focus on investment behaviors. Journal of Business Research, 164. https://doi.org/10.1016/j.jbusres.2023.114039
    28. Imerman, M. B., & Fabozzi, F. J. (2020). Cashing in on innovation: A taxonomy of FinTech. In Journal of Asset Management (Vol. 21, Issue 3, pp. 167–177). https://doi.org/10.1057/s41260-020-00163-4
    29. Joseph, J., Thomas, B., Jose, J., & Pathak, N. (2024). Decoding the growth of multimodal learning: A bibliometric exploration of its impact and influence. Intelligent Decision Technologies, 18(1), 151–167. https://doi.org/10.3233/IDT-230727
    30. Komperda, R. (2017). Likert-type survey data analysis with R and RStudio. In ACS Symposium Series (Vol. 1260, pp. 91–116). https://doi.org/10.1021/bk-2017-1260.ch007
    31. Ku, Y.-C., & Wang, H.-X. (2022). The Factors Influencing the Willingness of Investors to Use Robo-Advisors. 13327 LNCS, 286–299. https://doi.org/10.1007/978-3-031-05544-7_22
    32. Kwon, D., Jeong, P., & Chung, D. (2022). An empirical study of factors influencing the intention to use robo-advisors. Journal of Information & Knowledge Management, 21(03), 2250039.
    33. Mahmoud, M. I., Surwanti, A., & Pribadi, F. (2024). Bibliometric analysis of trends and patterns in capital structure research: A decade-long review (2012-2022). Multidisciplinary Reviews, 7(2). https://doi.org/10.31893/multirev.2024025
    34. Maryanti, R., Nandiyanto, A. B. D., Hufad, A., Sunardi, S., Al Husaeni, D., & Al Husaeni, D. (2023). A computational bibliometric analysis of science education research using vosviewer. Journal of Engineering Science and Technology, 18(1), 301–309.
    35. Merlin, J. I., & Prabakar, S. (2024). Trends and patterns: A bibliometric analysis of emotional intelligence and its implications for strategic leadership. Multidisciplinary Reviews, 7(4). https://doi.org/10.31893/multirev.2024063
    36. Nguyen, T. P. L., Chew, L. W., Muthaiyah, S., Teh, B. H., & Ong, T. S. (2023). Factors influencing acceptance of Robo-Advisors for wealth management in Malaysia. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2188992
    37. Niazi, M. A. (2016). Review of “CiteSpace: A Practical Guide For Mapping Scientific Literature” by Chaomei Chen. Complex Adaptive Systems Modeling, 4(1), 23. https://doi.org/10.1186/s40294-016-0036-5
    38. Puhle, M. (2019). THE PERFORMANCE and ASSET ALLOCATION of German ROBO-ADVISORS. Society and Economy, 41(3), 331–351. https://doi.org/10.1556/204.2019.41.3.4
    39. Racine, J. S. (2012). RStudio: A platform-independent IDE for R and Sweave. JSTOR.
    40. Ryu, H.-S., & Ko, K. S. (2020). Sustainable development of Fintech: Focused on uncertainty and perceived quality issues. In Sustainability (Switzerland) (Vol. 12, Issue 18). https://doi.org/10.3390/su12187669
    41. Savchenko, S., & Kobets, V. (2022). Development of Robo-Advisor System for Personalized Investment and Insurance Portfolio Generation. 1635 CCIS, 213–228. https://doi.org/10.1007/978-3-031-14841-5_14
    42. Souza de Cursi, E. (2023). Some Tips to Use R and RStudio. In E. Souza de Cursi (Ed.), Uncertainty Quantification using R (pp. 1–108). Springer International Publishing. https://doi.org/10.1007/978-3-031-17785-9_1
    43. Thomas, B., Joseph, J., & Jose, J. (2023). Explorative Bibliometric Study of Medical Image Analysis: Unveiling Trends and Advancements. Scientific Visualization, 15(5), 35–49. https://doi.org/10.26583/sv.15.5.04
    44. Uzkiyyah, N. U., Qamari, I. N., & Rahayu, M. K. P. (2023). Seven years of research tracing on turnover intention: Bibliometric analysis. Multidisciplinary Reviews, 6(3). https://doi.org/10.31893/multirev.2023025
    45. Van Eck, N. J., & Waltman, L. (2009). VOSviewer: A computer program for bibliometric mapping. In 12th International Conference on Scientometrics and Informetrics, ISSI 2009 (pp. 886–897). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901992309&partnerID=40&md5=2b19eafa3759e96b197c3ec7535a731f
    46. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
    47. Wang, S., & Pradhan Dr, S. (2020). Exploring factors influencing older adults’ willingness to use robo-advisors.
    48. Xia, H., Zhang, Q., Zhang, J. Z., & Zheng, L. J. (2023). Exploring investors’ willingness to use robo-advisors: Mediating role of emotional response. Industrial Management & Data Systems, 123(11), 2857–2881. https://doi.org/10.1108/IMDS-07-2022-0400
    49. Yang, J., Cheng, C., Shen, S., & Yang, S. (2017). Comparison of complex network analysis software: Citespace, SCI 2 and Gephi. 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), 169–172.
    50. Zhang, M. (2023). Research on Hot Topics and Trends of Tutor’s Guidance Style: Citespace-based Bibliometric Analysis. In ACM International Conference Proceeding Series (pp. 84–91). https://doi.org/10.1145/3591139.3591147

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Mathew, L., Govindan, V. M., Jayakumar, A., Unnikrishnan, U., & Jose, J. (2024). The evolution of financial technology: A comprehensive bibliometric review of robo-advisors. Multidisciplinary Reviews, 7(11), 2024274. https://doi.org/10.31893/multirev.2024274
  • Article viewed - 684
  • PDF downloaded - 571