• Abstract

    The integration of robotics into medicine represents a groundbreaking advancement with transformative potential across various medical domains. This comprehensive review delves into both the remarkable advancements and the significant limitations associated with this integration. Advancements in robotic medicine include precision surgery, which facilitatesintricate procedures with enhanced accuracy and minimal invasiveness. Robotic systems enable teleoperation, allowing surgeons to perform procedures remotely, and expanding access to specialized care. Enhanced imaging and navigation capabilities further augment surgical precision and efficiency. Additionally, robotics play a vital role in rehabilitation therapy, aiding in personalized patient recovery. However, these advancements have substantial limitations. The cost of acquiring and maintaining robotic systems poses a significant barrier to widespread adoption, particularly in resource-constrained healthcare settings. Moreover, mastering robotic surgical techniques demands extensive training, contributing to a steep learning curve for healthcare professionals. Technical challenges such as system reliability and interoperability also present hurdles to seamless integration. Ethical considerations surrounding patient autonomy, accountability, and data privacy must be carefully addressed. Legal frameworks and regulatory standards are essential to ensure patient safety and mitigate liability risks associated with robotic-assisted interventions. Furthermore, disparities in access to robotic technology may exacerbate existing healthcare inequalities. Addressing these limitations requires concerted efforts from healthcare stakeholders, policymakers, and technology developers. Collaborative initiatives are needed to overcome financial, educational, technical, ethical, and regulatory barriers to integrating robotics into mainstream medical practice. By navigating these challenges, the full potential of robotics in medicine can be realized, ushering in an era of enhanced precision, efficiency, and accessibility in healthcare delivery.

  • References

    1. Acharya, S., Maharjan, R., & Shrestha, P. (2019). Robotics in medicine: Past, present, and future. Journal of Nepal Medical Association, 57(219), 741-748. https://doi.org/10.31729/jnma.3995
    2. Bhayani, S. B., Link, R. E., & Varkarakis, I. M. (2007). Robotic-assisted laparoscopic radical prostatectomy: Initial experience in men with high-risk disease. The Journal of Urology, 178(3 Pt 1), 862–868.
    3. Das, S., & Dasgupta, P. (2019). The science and reality of tele-robotic surgery—Finding the right balance. BJU International, 123(1), 12–14. https://doi.org/10.1111/bju.14476
    4. Dewar, A., & Fabre, G. (2015). The legal and ethical challenges of robotics. International Journal of Social Robotics, 7(4), 519–526. https://doi.org/10.1007/s12369-015-0308-7
    5. Edwards, S. J., & Chan, M. (2016). Ethical issues in robotics and human enhancement. In J. Lin, K. Abney, & G. A. Bekey (Eds.), Robot Ethics 2, 347–360. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780190652951.003.0019
    6. Elnahas, A., Bhatt, A., Saddekni, S., et al. (2021). Intraoperative use of indocyanine green fluorescence imaging to assess gastric tube perfusion during esophagectomy. Surgical Endoscopy, 35(3), 1180–1187. https://doi.org/10.1007/s00464-020-07431-6 Erickson, V. L., Barua, R. S., & Khasgiwala, A. (2019). The evolving role of cardiac robotics and artificial intelligence in percutaneous coronary interventions. Current Cardiology Reports, 21(10), 122.
    7. Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation, 91(11), 911–921. https://doi.org/10.1097/phm.0b013e318269d9a6
    8. Ethical and legal issues in robotics. (2016). In Springer Handbook of Robotics (pp. 1961–1984). Springer. https://doi.org/10.1007/978-3-319-32552-1_66
    9. Farber, N. J., Saalwachter, A. R., Lehman, E. B., et al. (2019). Robotic-assisted partial nephrectomy: Current perspectives and future directions. Research and Reports in Urology, 11, 27–35. https://doi.org/10.2147/rru.s179319
    10. Frost, M., & Rahman, F. (2020). Robotics in rehabilitation medicine: A review. Current Physical Medicine and Rehabilitation Reports, 8(4), 407-413. https://doi.org/10.1007/s40141-020-00252-3
    11. Garg, S., & Roy, S. (2019). Telemedicine and telepresence in surgery. The Indian Journal of Surgery, 81(1), 61–66. https://doi.org/10.1007/s12262-018-1775-0
    12. George, T., Klosterhalfen, B., Klinge, U., Fischer, D., & Kuthe, A. (2018). Learning curve for robotic-assisted inguinal hernia repair. Surgical Endoscopy, 32(2), 806-812. https://doi.org/10.1007/s00464-017-5667-y
    13. Ghazi, A., Campbell, T., Melnyk, R., & Feng, C. (2020). Current status of robotics in endourological surgery: Results of a worldwide survey. World Journal of Urology, 38(10), 2613-2621. https://doi.org/10.1007/s00345-019-02922-4
    14. Gomez, E. J., Poon, J., Yuh, D. D., et al. (2008). The surgical assistant workstation: A user interface for telesurgical robotics. International Journal of Medical Robotics and Computer Assisted Surgery, 4(2), 97–105. https://doi.org/10.1002/rcs.191 Asimakopoulos, A. D., Pereira Fraga, C. T., Annino, F., et al. (2017). Ethics and legal considerations of surgical robotics. International Journal of Urology, 24(2), 97–106. https://doi.org/10.1111/iju.13322
    15. Hagen, M. E., Jung, M. K., Fakhro, J., et al. (2006). Telepresence surgery: A systematic review. Telemedicine and e-Health, 12(5), 536–545.
    16. Hruby, G. W., Marruffo, F. C., Durand, D. B., et al. (2014). The da Vinci Xi robot: A review of current evidence. Urologic Oncology: Seminars and Original Investigations, 32(3), 330–337. https://doi.org/10.1016/j.urolonc.2013.10.002
    17. Hu, J. C., Nelson, R. A., Wilson, T. G., et al. (2012). Perioperative outcomes of robotic-assisted laparoscopic vs. open partial nephrectomy: A multicenter randomized controlled trial. European Urology, 62(3), 462–469. https://doi.org/10.1016/j.eururo.2012.05.049
    18. Hu, J. C., Nelson, R. A., Wilson, T. G., et al. (2016). Perioperative outcomes, health care costs, and survival after robotic-assisted versus open radical cystectomy: A national comparative effectiveness study. European Urology, 70(1), 195–202. https://doi.org/10.1016/j.eururo.2015.11.021
    19. Hu, Y., Song, L., Guo, J., et al. (2019). Clinical utility of 3-dimensional printing in the surgical planning of tracheal stenosis. Journal of Thoracic Disease, 11(10), 4341–4347. https://doi.org/10.21037/jtd.2019.10.13
    20. Husainy, M. A., Hakim, A., & Raison, N. (2019). Robotics in surgery: Applications, challenges and ethical considerations. EFORT Open Reviews, 4(6), 332-338. https://doi.org/10.1302/2058-5241.4.180071
    21. Kantelhardt, S. R., Martirosyan, N. L., Cavalcanti, D. D., et al. (2016). Advanced 3-dimensional navigation in neurosurgery. World Neurosurgery, 95, 107–115. https://doi.org/10.1016/j.wneu.2016.08.080
    22. Kim, M. C., Kim, K. H., Jung, G. J., et al. (2008). Comparative study of robot-assisted distal subtotal gastrectomy and laparoscopic distal subtotal gastrectomy. Journal of the American College of Surgeons, 206(2), 186–191. https://doi.org/10.1016/j.jamcollsurg.2007.08.017
    23. Lanfranco, A. R., Castellanos, A. E., & Desai, J. P. (2004). Mentored training in robotic surgery: A new paradigm. Annals of Surgery, 240(3), 428–436. https://doi.org/10.1097/01.sla.0000137136.49028.e7
    24. Latifi, R., & Mora, F. (2018). Telemedicine and telepresence for trauma and emergency care management. Scandinavian Journal of Surgery, 107(2), 136–142. https://doi.org/10.1177/1457496918766072
    25. Li, M., Zhou, Y., & Wang, X. (2020). Application of 3-dimensional printing technology combined with a modified surgical approach in the treatment of acetabular fractures. Orthopedic Surgery, 12(2), 627–636. https://doi.org/10.1111/os.12722
    26. Lipson, H., & Kurman, M. (2016). The FDA and the case of personalized medicine. Trends in Biotechnology, 34(3), 171-173. https://doi.org/10.1016/j.tibtech.2015.12.005
    27. Loconsole, C., Bacciu, D., Barsocchi, P., et al. (2019). Wearable and assistive robotics: Current trends and challenges. IEEE Robotics and Automation Magazine, 26(2), 34–42. https://doi.org/10.1109/mra.2019.2897531
    28. Magrina, J. F. (2008). Complications of laparoscopic surgery. Clinical Obstetrics and Gynecology, 51(3), 453–461. https://doi.org/10.1097/grf.0b013e31816d7c22
    29. Mavrogiorgou, A., Mavrogiorgos, N., & Ferreira, A. (2017). Robotics in medicine: Legal and ethical challenges. In 2nd South –East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM) (pp. 1–6). IEEE. https://doi.org/10.1109/seeda-cecnsm.2017.84855
    30. Meguid, R. A., Brooke, B. S., Chang, D. C., Sherwood, J. T., Brock, M. V., & Yang, S. C. (2008). Are racial disparities in lung cancer surgical outcomes avoidable? The Journal of Thoracic and Cardiovascular Surgery, 135(5), 937–946.
    31. Mehrholz, J., Pohl, M., Platz, T., et al. (2015). Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Reviews, 9, CD006185. https://doi.org/10.1002/14651858.CD006185.pub3
    32. Moorman, M. L., Price, D. L., & Altieri, M. S. (2016). A practical guide to maintenance and troubleshooting of surgical instruments for robotic surgery. Journal of the American Association of Gynecologic Laparoscopists, 23(3), 349–355. https://doi.org/10.1016/j.jmig.2015.11.003
    33. Okamura, A. M., Simone, C., & O'Leary, M. D. (2004). Force modeling for needle insertion into soft tissue. IEEE Transactions on Biomedical Engineering, 51(10), 1707-1716. https://doi.org/10.1109/TBME.2004.827933
    34. Poon, J., Konstantinidis, K., & Elhage, S. (2019). Combined 3D printing and robotic surgery for excision of a pelvic giant schwannoma. Urology Case Reports, 24, 100876. https://doi.org/10.1016/j.eucr.2019.100876
    35. Patel, V. R., & Srinivasan, A. (2014). Surgical robotics: The current state of art and future directions. Journal of Robot Surgery, 8(1), 9–14. https://doi.org/10.1007/s11701-013-0422-4
    36. Reed, S. J., Saylor, M. T., & Murtha, A. P. (2019). Robotics in gynecologic surgery: An overview of contemporary practice. Clinical Obstetrics and Gynecology, 62(3), 463-471. https://doi.org/10.1097/GRF.0000000000000421
    37. Rosen, J. M., Smith, J. R., & Sorensen, A. (2020). Robotics in imaging: A review. Journal of Medical Imaging and Radiation Sciences, 51(2), 257-263. https://doi.org/10.1016/j.jmir.2020.01.007
    38. Rosen, J., Solazzo, M., Hannaford, B., & Sinanan, M. (2001). Haptic feedback enhanced robotic surgery. In Proceedings of the IEEE International Conference on Robotics and Automation, 1, 355–360. https://doi.org/10.1109/robot.2001.933072
    39. Rosen, J., Solazzo, M., Hannaford, B., & Sinanan, M. (2001). Task decomposition of laparoscopic surgery for objective evaluation of surgical residents' learning curve using hidden Markov model. Annals of Surgery, 233(6), 865–871.
    40. Smith, R., Patel, V., & Satava, R. (2007). Fundamentals of remote surgery. Surgical Endoscopy, 21(8), 1223–1235. https://doi.org/10.1007/s00464-006-9163-2
    41. Trimmer, C., Block, M., & Lotan, Y. (2017). Cost-effectiveness of robotic surgery. Current Opinion in Urology, 27(2), 161–166. https://doi.org/10.1097/MOU.0000000000000361
    42. Veronesi, G., De Simone, M., Scuderi, V., et al. (2021). The learning curve in robotic general surgery: A systematic review. Annals of Surgery, 273(1), 109–118. https://doi.org/10.1097/sla.0000000000003506
    43. Wenham, A., Smith, J., & Morgan, R. (2021). Robotics in healthcare: A systematic review of cost and economic evaluations. Value in Health, 24(3), 345-353. https://doi.org/10.1016/j.jval.2020.10.007
    44. Wright, J. D., Ananth, C. V., Lewin, S. N., et al. (2013). Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. JAMA, 309(7), 689–698. https://doi.org/10.1001/jama.2013.186
    45. Wu, Q., Liu, F., Zhan, L., et al. (2019). Cybersecurity in medical robotics. IEEE Robotics & Automation Magazine, 26(2), 103–110. https://doi.org/10.1109/mra.2019.2916884
    46. Young, A. J., Hargrove, L. J., & Kuiken, T. A. (2011). The effects of use and disuse on neuromuscular performance and musculoskeletal health in individuals with upper limb loss. Journal of Electromyography and Kinesiology, 21(6), 947–956. https://doi.org/10.1016/j.jelekin.2011.08.003

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Pal, H. (2024). Advancements and limitations in integrating robotics into medicine: A comprehensive review. Multidisciplinary Reviews, 7(11), 2024248. https://doi.org/10.31893/multirev.2024248
  • Article viewed - 346
  • PDF downloaded - 161