• Abstract

    Floods, ever since the dawn of human civilization, have been seen as causes of massive disasters. Since its onset, the influence of human activity has increased, making this calamity more severe. Vulnerability to flooding is complex and multifaceted and it is a matter of critical importance. Since the scale of damage changes with location and with time, determining how susceptible a community is to flooding is of paramount importance. The research is an effort to summarize the methods developed to evaluate flood risk. By examining the authors and terms most commonly cited in the works of others, actionable tactics were uncovered. High-resolution data and a multidimensional approach to vulnerability assessment can enhance current procedures and strategies for estimating flood risk. This research recommends merging hydrodynamic models, geospatial methodologies for flood assessment to present a more complete view of flood vulnerability. It is potentially helpful in identifying methodological inadequacies for measuring flood risk at various geographical scales. The study analyzes several vulnerability components. This research has the potential to fill critical knowledge gaps in our understanding of how to measure exposure to flood risk across a variety of geographical scales.

  • References

    1. Azareh A, RafieiSardooi E, Choubin B, Barkhori S, Shahdadi A, Adamowski J & Shamshirband S (2021) Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto International, 36(20), 2345-2365. DOI: 10.1080/10106049.2019.1695958.
    2. Brennan M, Rondon-Sulbaran J, Sabogal-Paz LP, Fernandez-Ibañez P & Galdos-Balzategui A (2021) Conceptualising global water challenges: A transdisciplinary approach for understanding different discourses in sustainable development. Journal of Environmental Management, 298, 113361. DOI: 10.1016/j.jenvman.2021.113361.
    3. Chan SW, Abid SK, Sulaiman N, Nazir U & Azam K (2022) A systematic review of the flood vulnerability using geographic information system. Heliyon DOI: 10.1016/j.heliyon.2022.e09075.
    4. Chang SE, Yip JZ & Tse W (2019) Effects of urban development on future multi-hazard risk: The case of Vancouver, Canada. Natural Hazards 98:251-65. DOI: 10.1007/s11069-018-3510-x.
    5. Chaulagain D, Rimal PR, Ngando SN, Nsafon BE, Suh D & Huh JS (2023) Flood susceptibility mapping of Kathmandu metropolitan city using GIS-based multi-criteria decision analysis. Ecological Indicator, 154, 110653. DOI: 10.1016/j.ecolind.2023.110653.
    6. Cianconi P, Betrò S & Janiri L (2020). The impact of climate change on mental health: a systematic descriptive review. Frontiers in psychiatry, 11, 74. DOI: 10.3389/fpsyt.2020.00074
    7. Deria A, Ghannad P & Lee YC (2020) Evaluating implications of flood vulnerability factors with respect to income levels for building long-term disaster resilience of low-income communities. International Journal of Disaster Risk Reduction, 48, 101608. DOI: 10.1016/j.ijdrr.2020.101608.
    8. Djoumessi Tiague B (2023) Floods, Agricultural Production, and Household Welfare: Evidence from Tanzania. Environmental and Resource Economics, 85(2), 341-84. DOI: 10.1007/s10640-023-00769-3.
    9. Faeghi S & Roche S (2019) Environmental Configurations: When the River ZayandehRud Stopped Crossing Isfahan. Anthropology of the Middle East, 14(2), 29-41. DOI: 10.3167/ame.2019.140203.
    10. Garrote J, Peña E & Díez-Herrero A (2021) Probabilistic flood hazard maps from Monte Carlo derived peak flow values—An application to flood risk management in Zamora city (Spain). Applied Sciences, 11(14), 6629. DOI: 10.1016/j.ijdrr.2022.103011.
    11. Gaynor TS & Wilson ME (2020) Social vulnerability and equity: The disproportionate impact of COVID‐19. Public administration review, 80(5), 832-8. DOI: 10.1332/239788221X16216113385146.
    12. Grimaccia E & Naccarato A (2019) Food insecurity individual experience: A comparison of economic and social characteristics of the most vulnerable groups in the world. Social indicators research, 143, 391-410. DOI: 10.1007/s11205-018-1975-3.
    13. Guo X & Kapucu N (2020) Assessing social vulnerability to earthquake disaster using rough analytic hierarchy process method: A case study of Hanzhong City, China. Safety science, 125, 104625. DOI: 10.1016/j.ssci.2020.104625.
    14. Hussain M, Tayyab M, Zhang J, Shah AA, Ullah K, Mehmood U & Al-Shaibah B (2021) GIS-based multi-criteria approach for flood vulnerability assessment and mapping in district Shangla: Khyber Pakhtunkhwa, Pakistan. Sustainability, 13(6), 3126. DOI: 10.3390/su13063126.
    15. Islam AR, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A & Linh NT (2021). Flood susceptibility modeling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3), 101075. DOI: 10.1016/j.gsf.2020.09.006.
    16. Islam MM & Ahamed T (2023) Development of a near-infrared band derived water indices algorithm for rapid flash flood inundation mapping from sentinel-2 remote sensing datasets. Asia-Pacific Journal of Regional Science, 1-26. DOI: 10.1007/s41685-023-00288-5.
    17. Jozaei J, Chuang WC, Allen CR & Garmestani A (2022) Social vulnerability, social-ecological resilience and coastal governance. Global Sustainability, 5, e12. DOI: 10.1017/sus.2022.10.
    18. Khadka N, Chen X, Nie Y, Thakuri S, Zheng G & Zhang G (2021) Evaluation of Glacial Lake Outburst Flood susceptibility using multi-criteria assessment framework in Mahalangur Himalaya. Frontiers in Earth Science, 8, 601288. DOI: 10.3389/feart.2020.601288.
    19. Kumar M, Kalra N, Singh H, Sharma S, Rawat PS, Singh RK, Gupta AK, Kumar P & Ravindranath NH (2021) Indicator-based vulnerability assessment of forest ecosystem in the Indian Western Himalayas: An analytical hierarchy process integrated approach. Ecological Indicators, 125, 107568. DOI: 10.1016/j.ecolind.2021.107568.
    20. Langill JC & Abizaid C (2022) What is a bad flood? Local perspectives of extreme floods in the Peruvian Amazon. Ambio, 49(8), 1423-36. DOI: 10.1007/s13280-019-01278-8.
    21. Lechowska E (2022) Approaches in research on flood risk perception and their importance in flood risk management: a review. Natural Hazards, 111(3), 2343-78. DOI: 10.1007/s11069-021-05140-7.
    22. Li S, Wang Z, Lai C & Lin G (2020). Quantitative assessment of the relative impacts of climate change and human activity on flood susceptibility based on a cloud model. Journal of Hydrology, 588, 125051. DOI: 10.1016/j.jhydrol.2020.125051.
    23. Lorie M, Neumann JE, Sarofim MC, Jones R, Horton RM, Kopp RE, Fant C, Wobus C, Martinich J, O'Grady M & Gentile LE (2020) Modeling coastal flood risk and adaptation response under future climate conditions. Climate risk management, 29, 100233. DOI: https://doi.org/10.1016/j.crm.2020.100233.
    24. Lundberg A, Vital AV & Das S. (2021) Tropical imaginaries and climate crisis: embracing relational climate discourses. Etropic: electronic journal of studies in the tropics, 20, 1-31. DOI:10.25120/etropic.20.2.2021.3803
    25. Mahato S, Pal S, Talukdar S, Saha TK & Mandal P (2021) Field based index of flood vulnerability (IFV) A new validation technique for flood susceptible models. Geoscience Frontiers, 12(5), 101175. DOI: 10.1016/j.gsf.2020.09.006.
    26. Manfreda S & Samela C (2019) A digital elevation model based method for a rapid estimation of flood inundation depth. Journal of Flood Risk Management, 12, e12541. DOI: 10.1111/jfr3.12541.
    27. McEntire DA (2021) Disaster response and recovery: strategies and tactics for resilience. John Wiley & Sons ; DOI: 10.1007/s12517-022-07324-9.
    28. Mendelsohn R, Rajaoberison A & Yoo J (2020) A coastal resilience analysis of a heterogeneous landscape. Journal of Environmental Protection, 11(6), 441-56. DOI: 10.1080/08920753.2022.2037387.
    29. Mind'je R, Li L, Amanambu AC, Nahayo L, Nsengiyumva JB, Gasirabo A & Mindje M (2021). Flood susceptibility modeling and hazard perception in Rwanda. International journal of disaster risk reduction 38:101211. DOI: 10.1016/j.ijdrr.2019.101211.
    30. Ou M, Zhong Y, Ma H, Wang W & Bi M (2022) Impacts of policy-driven transformation in the livelihoods of fishermen on agricultural landscape patterns: A case study of a fishing village, island of Poyang Lake. Land, 11(8), 1236. DOI: 10.3390/land11081236
    31. Paprotny D, Kreibich H, Morales-Nápoles O, Wagenaar D, Castellarin A, Carisi F, Bertin X, Merz B & Schröter K (2021) A probabilistic approach to estimating residential losses from different flood types. Natural Hazards, 105, 2569-601. DOI: 10.1007/s11069-020-04413-x.
    32. Paulik R, Wild A, Zorn C & Wotherspoon L (2022) Residential building flood damage: Insights on processes and implications for risk assessments. Journal of Flood Risk Management, 15(4), e12832. DOI: 10.1111/jfr3.12832.
    33. Rafiei-Sardooi E, Azareh A, Choubin B, Mosavi AH & Clague JJ (2021) Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. International Journal of Disaster Risk Reduction, 66, 102614. DOI: 10.1016/j.ijdrr.2021.102614.
    34. Rehman S, Sahana M, Hong H, Sajjad H & Ahmed BB (2019) A systematic review on approaches and methods used for flood vulnerability assessment: Framework for future research. Natural Hazards, 96, 975-98. DOI: 10.1007/s11069-018-03567-z.
    35. Roy P, Pal SC, Chakrabortty R, Chowdhuri I, Malik S & Das B (2020) Threats of climate and land use change on future flood susceptibility. Journal of Cleaner Production, 272, 122757. DOI: 10.1016/j.jclepro.2020.122757.
    36. Roy S, Bose A & Chowdhury IR (2021) Flood risk assessment using geospatial data and multi-criteria decision approach: a study from historically active flood-prone region of Himalayan foothill, India. Arabian Journal of Geosciences, 14(11), 999. DOI: 10.1007/s12517-021-07324-8.
    37. Saha A, Pal SC, Arabameri A, Blaschke T, Panahi S, Chowdhuri I, Chakrabortty R, Costache R & Arora A (2021) Flood susceptibility assessment using novel ensemble of hyperpipes and support vector regression algorithms. Water, 13(2), 241. DOI: 10.3390/w13020241.
    38. Taghinezhad A, Friedland CJ & Rohli RV (2021) Benefit-cost analysis of flood-mitigated residential buildings in Louisiana. Housing and Society, 48(2), 185-202. DOI: 10.1080/08882746.2020.1796120.
    39. Talukdar S, Ghose B, Shahfahad, Salam R, Mahato S, Pham QB, Linh NT, Costache R & Avand M (2020) Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stochastic Environmental Research and Risk Assessment, 34, 2277-300. DOI: 10.1007/s00477-020-01862-5.
    40. van der Geest K & Warner K (2019) Loss and damage in the IPCC Fifth Assessment Report (Working Group II): a text-mining analysis. Climate Policy, 20(6), 729-42. DOI: 10.1080/14693062.2019.1704678.
    41. Yang R, Zheng G, Hu P, Liu Y, Xu W & Bao A (2022) Snowmelt Flood Susceptibility Assessment in Kunlun Mountains Based on the Swin Transformer Deep Learning Method. Remote Sensing, 14(24), 6360. DOI: 10.3390/rs14246360.
    42. Yaseen A, Lu J & Chen X (2022) Flood susceptibility mapping in an arid region of Pakistan through ensemble machine learning model. Stochastic Environmental Research and Risk Assessment, 36(10), 3041-61. DOI: 10.1007/s00477-022-02179-1.
    43. Zeng Z, Lan J, Hamidi AR & Zou S (2020) Integrating Internet media into urban flooding susceptibility assessment A case study in China. Cities, 101, 102697.DOI: 10.1016/j.cities.2020.102697.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Malque Publishing

How to cite

Kumar, S., Kopare, A., Chandra, U., & Pooja. (2024). A comprehensive review of methodologies and implications for evaluating flood susceptibility. Multidisciplinary Reviews, 6, 2023ss035. https://doi.org/10.31893/multirev.2023ss035
  • Article viewed - 158
  • PDF downloaded - 88