• Abstract

    Digital social platforms such as Facebook, Instagram, Snapchat, etc., driven by multimedia content, has led to billions of photos being shared annually. The ease of image modification has resulted in ‘deepfakes’, causing potential misinformation, emotional distress, and credibility loss. Image forgery has become a widespread problem with the advent of digital manipulation tools. Manipulated pictures are a problem in the digital world, demanding strong detection methods. This survey explores this important field and offers an extensive overview of state-of-the-art methods for identifying picture forgeries. Breaking down well-known techniques such as classic feature analysis, which unmask significant differences by examining pixels in depth and statistical irregularities. Moreover, this paper explores the revolutionary potential of deep learning by highlighting how convolutional neural networks (CNNs) can analyze pictures with unparalleled accuracy and reveal previously unseen alterations. By providing readers with a comprehensive grasp of the most recent developments in picture forgery detection with the datasets, this article gives them the knowledge they need to successfully negotiate the always changing field of visual deception. This survey acts as a launchpad for further research and development.

  • References

    1. Abir, N. A. M., Warif, N. B. A., & Zainal, N. (2024). An automatic enhanced filters with frequency-based copy-move forgery detection for social media images. Multimedia Tools and Applications, 83(1), 1513-1538.
    2. Amrutha, E., Arivazhagan, S., & Sylvia Lilly Jebarani, W. (2022). MixNet: A robust mixture of convolutional neural networks as feature extractors to detect stego images created by content-adaptive steganography. Neural Processing Letters, 54(2), 853-870.
    3. Ardy, R. D., Indriani, O. R., Sari, C. A., & Rachmawanto, E. H. (2017, November). Digital image signature using triple protection cryptosystem (RSA, Vigenere, and MD5). In 2017 International Conference on Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS), 87-92. IEEE.
    4. Babu, S. T., & Rao, C. S. (2023). Copy-Move Forgery Verification in Images Using Local Feature Extractors and Optimized Classifiers. Big Data Mining and Analytics, 6(3), 347-360.
    5. Bayar, B., & Stamm, M. C. (2018). Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection. IEEE Transactions on Information Forensics and Security, 13(11), 2691-2706.
    6. Bhatti, M. S., Hussain, S. A., Qayyum, A., Latif, I., Hasnain, M., & Hashmi, S. I. (2017). Sab-íomha: An Automated Image Forgery Detection Technique Using Alpha Channel Steganography. In Recent Advances in Information Systems and Technologies, 2(5), 736-744.
    7. Bhole, P., & Wajgi, D. (2020). An Approach for Image Forgery Detection. International Journal of Research in Engineering, Science and Management, 3(2).
    8. Birajdar, G. K., & Mankar, V. H. (2013). Digital image forgery detection using passive techniques: A survey. Digital investigation, 10(3), 226-245.
    9. Chaitra, B., & Reddy, P. B. (2023). An approach for copy-move image multiple forgery detection based on an optimized pre-trained deep learning model. Knowledge-Based Systems, 269, 110508.
    10. Chang, T. Y., Tai, S. C., & Lin, G. S. (2014). A passive multipurpose scheme based on periodicity analysis of CFA artifacts for image forensics. Journal of Visual Communication and Image Representation, 25(6), 1289-1298.
    11. Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2010). Digital image steganography: Survey and analysis of current methods. Signal processing, 90(3), 727-752.
    12. Chen, H., Chang, C., Shi, Z., & Lyu, Y. (2022). Hybrid features and semantic reinforcement network for image forgery detection. Multimedia Systems, 28(2), 363-374.
    13. Chen, K., Zhou, Z., Li, Y., Ji, X., Wu, J., Coatrieux, G., ... & Chen, Y. (2023). RED-Net: Residual and Enhanced Discriminative Network for Image Steganalysis in the Internet of Medical Things and Telemedicine. IEEE Journal of Biomedical and Health Informatics.
    14. Dalal, M., & Juneja, M. (2021). Steganography and Steganalysis (in digital forensics): a Cybersecurity guide. Multimedia Tools and Applications, 80(4), 5723-5771.
    15. Diallo, B., Urruty, T., Bourdon, P., & Fernandez-Maloigne, C. (2020). Robust forgery detection for compressed images using CNN supervision. Forensic Science International: Reports, 2, 100112.
    16. Dua, S., Singh, J., & Parthasarathy, H. (2020). Image forgery detection based on statistical features of block DCT coefficients. Procedia Computer Science, 171, 369-378.
    17. El Biach, F. Z., Iala, I., Laanaya, H., & Minaoui, K. (2022). Encoder-decoder based convolutional neural networks for image forgery detection. Multimedia Tools and Applications, 1-18.
    18. Ernawan, F., Aminuddin, A., Nincarean, D., Ab Razak, M. F., & Ahmad, F. (2022). Three layer authentications with a spiral block mapping to prove authenticity in medical images. International Journal of Advanced Computer Science and Applications, 13(4).
    19. Feng, H., & Choong Wah, C. (2002). Private key generation from on‐line handwritten signatures. Information Management & Computer Security, 10(4), 159-164.
    20. Fernández, E. G., Orozco, A. L. S., & Villalba, L. J. G. (2023). A multichannel approach for detecting tampering in colour filter images. Expert Systems with Applications, 230, 120498.
    21. Ferrara, P., Bianchi, T., De Rosa, A., & Piva, A. (2012). Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Transactions on Information Forensics and Security, 7(5), 1566-1577.
    22. Gan, Y., Zhong, J., & Vong, C. (2022). A novel copy-move forgery detection algorithm via feature label matching and hierarchical segmentation filtering. Information Processing & Management, 59(1), 102783.
    23. Gao, G., Zhang, H., Xia, Z., Luo, X., & Shi, Y. Q. (2023). Reversible data hiding-based contrast enhancement with multii-group stretching for ROI of medical image. IEEE Transactions on Multimedia.
    24. Ghoneim, A., Muhammad, G., Amin, S. U., & Gupta, B. (2018). Medical image forgery detection for smart healthcare. IEEE Communications Magazine, 56(4), 33-37.
    25. Goel, N., Kaur, S., & Bala, R. (2021). Dual branch convolutional neural network for copy move forgery detection. IET Image Processing, 15(3), 656-665.
    26. Goel, R. K., Dixit, G. K., Shrivastava, S., Singh, M. P., & Vishnoi, S. (2020). Implementing RNN with Non-Randomized GA for the Storage of Static Image Patterns. International Journal on Electrical Engineering and Informatics, 12(4), 966-978.
    27. González Fernández, E., Sandoval Orozco, A. L., Garcia Villalba, L. J., & Hernandez-Castro, J. (2018). Digital image tamper detection technique based on spectrum analysis of CFA artifacts. Sensors, 18(9), 2804.
    28. Habibi, M., & Hassanpour, H. (2021). Splicing image forgery detection and localization based on color edge inconsistency using statistical dispersion measures. International Journal of Engineering, 34(2), 443-451.
    29. Hammad, B. T., Ahmed, I. T., & Jamil, N. (2022, July). An secure and effective copy move detection based on pretrained model. In 2022 IEEE 13th Control and System Graduate Research Colloquium (ICSGRC) (pp. 66-70). IEEE.
    30. Han, J. G., Park, T. H., Moon, Y. H., & Eom, I. K. (2018). Quantization-based Markov feature extraction method for image splicing detection. Machine Vision and Applications, 29, 543-552.
    31. Hebbar, N. K., & Kunte, A. S. (2021). TRANSFER LEARNING APPROACH FOR SPLICING AND COPY-MOVE IMAGE TAMPERING DETECTION. ICTACT Journal on Image & Video Processing, 11(4).
    32. Hu, X., Ni, J., & Shi, Y. Q. (2018). Efficient JPEG steganography using domain transformation of embedding entropy. IEEE Signal Processing Letters, 25(6), 773-777.
    33. Hussan, M., Parah, S. A., Gull, S., & Qureshi, G. J. (2021). Tamper detection and self-recovery of medical imagery for smart health. Arabian Journal for Science and Engineering, 46, 3465-3481.
    34. Hussan, M., Parah, S. A., Jan, A., & Qureshi, G. J. (2022). Hash-based image watermarking technique for tamper detection and localization. Health and Technology, 12(2), 385-400.
    35. Hussain, I., Tan, S., & Huang, J. (2024). A semisupervised deep learning approach for cropped image detection. Expert Systems with Applications, 243, 122832.
    36. Ibaida, A., & Khalil, I. (2013). Wavelet-based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Transactions on biomedical engineering, 60(12), 3322-3330.
    37. Imgur (2022). https://121clicks.com/inspirations/fake-viral-photoshopped-images-that-believed-real. Accessed on November 6, 2023.
    38. Jonker, S., Jelstrup, M., Meng, W., & Lampe, B. (2024). Detecting Post Editing of Multimedia Images using Transfer Learning and Fine Tuning. ACM Transactions on Multimedia Computing, Communications and Applications.
    39. Karakis, R. (2023). MI-STEG: A Medical Image Steganalysis Framework Based on Ensemble Deep Learning. Computers, Materials & Continua, 74(3).
    40. Kasban, H., & Nassar, S. (2020). An efficient approach for forgery detection in digital images using Hilbert–Huang transform. Applied Soft Computing, 97, 106728.
    41. KASIM, Ö. (2024). Deep learning-based efficient and robust image forgery detection. Multimedia Tools and Applications, 1-20.
    42. Khan, S., Wahid, M., Khan, T., Ahmad, N., & Zafar, M. H. (2018, September). Column level image authentication technique using hidden digital signatures. In 2018 24th International Conference on Automation and Computing (ICAC) (pp. 1-6). IEEE.
    43. Khan, S., Khan, K., Ali, F., & Kwak, K. S. (2020). Forgery detection and localization of modifications at the pixel level. Symmetry, 12(1), 137.
    44. Khan, S. (2021). CLIFD: A novel image forgery detection technique using digital signatures. Journal of Engineering Research, 9(1).
    45. Khor, H. L., Liew, S. C., & Zain, J. M. (2017). Region of interest-based tamper detection and lossless recovery watermarking scheme (ROI-DR) on ultrasound medical images. Journal of digital imaging, 30, 328-349.
    46. Kiran, L. C., Chowdary, G. A., Raju, M. S., & Gopi, K. (2021). Digital signature forgery detection using CNN. International Research Journal of Engineering and Technology, 8(6), 2969-2973.
    47. Le, N., & Retraint, F. (2019). An improved algorithm for digital image authentication and forgery localization using demosaicing artifacts. IEEE Access, 7, 125038-125053.
    48. Li, C., Ma, Q., Xiao, L., Li, M., & Zhang, A. (2017). Image splicing detection based on Markov features in QDCT domain. Neurocomputing, 228, 29-36.
    49. Lu, S., Hu, X., Wang, C., Chen, L., Han, S., & Han, Y. (2022). Copy-move image forgery detection based on evolving circular domains coverage. Multimedia Tools and Applications, 81(26), 37847-37872.
    50. Marra, F., Gragnaniello, D., Verdoliva, L., & Poggi, G. (2020). A full-image full-resolution end-to-end-trainable CNN framework for image forgery detection. IEEE Access, 8, 133488-133502.
    51. Mayer, O., & Stamm, M. (2016, March). Improved forgery detection with lateral chromatic aberration. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2024-2028). IEEE.
    52. Mayer, O., & Stamm, M. C. (2017, June). Countering anti-forensics of lateral chromatic aberration. In Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security (pp. 15-20).
    53. Mayer, O., & Stamm, M. C. (2018). Accurate and efficient image forgery detection using lateral chromatic aberration. IEEE Transactions on information forensics and security, 13(7), 1762-1777.
    54. Meena, K. B., & Tyagi, V. (2021). A deep learning based method for image splicing detection. In Journal of physics: conference series (Vol. 1714, No. 1, p. 012038). IOP Publishing.
    55. Nazir, T., Nawaz, M., Masood, M., & Javed, A. (2022). Copy move forgery detection and segmentation using improved mask region-based convolution network (RCNN). Applied Soft Computing, 131, 109778.
    56. Odabas Yildirim, E., Tahaoglu, G., Ulutas, G., Ustubioglu, B., & Nabiyev, V. (2023). Color Image Splicing Localization Based on Block Classification Using Transition Probability Matrix. Wireless Personal Communications, 129(3), 1893-1919.
    57. Ogla, R. A. S. (2019). Symmetric-Based steganography technique using spiral-searching method for HSV color images. Baghdad Science Journal, 16(4), 0948-0948.
    58. Palani, A., & Loganathan, A. (2024). Semi-Blind watermarking using convolutional attention-based turtle shell matrix for tamper detection and recovery of medical images. Expert Systems with Applications, 238, 121903.
    59. Pham, N. T., Lee, J. W., Kwon, G. R., & Park, C. S. (2019). Efficient image splicing detection algorithm based on markov features. Multimedia Tools and Applications, 78, 12405-12419.
    60. Pramanik, S., Bandyopadhyay, S. K., & Ghosh, R. (2020, March). Signature image hiding in color image using steganography and cryptography based on digital signature concepts. In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) (pp. 665-669). IEEE.
    61. Qazanfari, K., & Safabakhsh, R. (2014). A new steganography method which preserves histogram: Generalization of LSB++. Information Sciences, 277, 90-101.
    62. Quan, Y., & Li, C. T. (2020). On addressing the impact of ISO speed upon PRNU and forgery detection. IEEE Transactions on Information Forensics and Security, 16, 190-202.
    63. Rao, Y., Ni, J., & Zhao, H. (2020). Deep learning local descriptor for image splicing detection and localization. IEEE access, 8, 25611-25625.
    64. Rashid, R. D. (2015). Robust steganographic techniques for secure biometric-based remote authentication (Doctoral dissertation), University of Buckingham.
    65. Reinel, T. S., Brayan, A. A. H., Alejandro, B. O. M., Alejandro, M. R., Daniel, A. G., Alejandro, A. G. J., ... & Raul, R. P. (2021). GBRAS-Net: a convolutional neural network architecture for spatial image steganalysis. IEEE Access, 9, 14340-14350.
    66. Rhee, K. H. (2020). Composition of visual feature vector pattern for deep learning in image forensics. IEEE Access, 8, 188970-188980.
    67. Saddique, M., Asghar, K., Bajwa, U. I., Hussain, M., Aboalsamh, H. A., & Habib, Z. (2020). Classification of authentic and tampered video using motion residual and parasitic layers. IEEE Access, 8, 56782-56797.
    68. Salomon, M., Couturier, R., Guyeux, C., Couchot, J. F., & Bahi, J. M. (2017). Steganalysis via a convolutional neural network using large convolution filters for embedding process with same stego key: A deep learning approach for telemedicine. European Research in Telemedicine/La Recherche Européenne en Télémédecine, 6(2), 79-92.
    69. Samir, S., Emary, E., El-Sayed, K., & Onsi, H. (2020). Optimization of a pretrained AlexNet model for detecting and localizing image forgeries. Information, 11(5), 275.
    70. Sarkar, D., Palit, S., Som, S., & Dey, K. N. (2020). Large scale image tamper detection and restoration. Multimedia Tools and Applications, 79(25), 17761-17791.
    71. Sedeeq, I. (2023). Image Splicing Detection Based on Discrete Wavelet Transform and co-occurrence Matrix. Iraqi Journal of Science, 5940-5951.
    72. Sharma, S., Ravi, H., Subramanyam, A. V., & Emmanuel, S. (2020). Anti-forensics of median filtering and contrast enhancement. Journal of Visual Communication and Image Representation, 66, 102682.
    73. Singh, B., & Sharma, M. K. (2021). Tamper detection technique for document images using zero watermarking in wavelet domain. Computers & Electrical Engineering, 89, 106925.
    74. Singh, G., & Singh, K. (2020). Digital image forensic approach based on the second-order statistical analysis of CFA artifacts. Forensic Science International: Digital Investigation, 32, 200899.
    75. Singh, P., & Chadha, R. S. (2013). A survey of digital watermarking techniques, applications and attacks. International Journal of Engineering and Innovative Technology (IJEIT), 2(9), 165-175.
    76. Su, G. D., Chang, C. C., & Lin, C. C. (2020). Effective self-recovery and tampering localization fragile watermarking for medical images. IEEE Access, 8, 160840-160857.
    77. Tahaoglu, G., Ulutas, G., Ustubioglu, B., & Nabiyev, V. V. (2021). Improved copy move forgery detection method via L* a* b* color space and enhanced localization technique. Multimedia Tools and Applications, 80, 23419-23456.
    78. Tailanian, M., Gardella, M., Pardo, Á., & Musé, P. (2024). Diffusion models meet image counter-orensics. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 3925-3935).
    79. Tavares, R., & Madeiro, F. (2016). Word-hunt: a LSB steganography method with low expected number of modifications per pixel. IEEE Latin America Transactions, 14(2), 1058-1064.
    80. Tinnathi, S., & Sudhavani, G. (2021). An efficient copy move forgery detection using adaptive watershed segmentation with AGSO and hybrid feature extraction. Journal of Visual Communication and Image Representation, 74, 102966.
    81. Vega, E. A. A., Fernandez, E. G., Orozco, A. L. S., & Villalba, L. J. G. (2020). Passive image forgery detection based on the demosaicing algorithm and JPEG compression. IEEE Access, 8, 11815-11823.
    82. Wang, C., Huang, Z., Qi, S., Yu, Y., Shen, G., & Zhang, Y. (2023). Shrinking the semantic gap: spatial pooling of local moment invariants for copy-move forgery detection. IEEE Transactions on Information Forensics and Security, 18, 1064-1079.
    83. Xia, X., Su, L. C., Wang, S. P., & Li, X. Y. (2024). DMFF-Net: Double-stream multilevel feature fusion network for image forgery localization. Engineering Applications of Artificial Intelligence, 127, 107200.
    84. Xia, X., Zhang, S., Wang, K., & Gao, T. (2023). A novel color image tampering detection and self-recovery based on fragile watermarking. Journal of Information Security and Applications, 78, 103619.
    85. Xiao, B., Wei, Y., Bi, X., Li, W., & Ma, J. (2020). Image splicing forgery detection combining coarse to refined convolutional neural network and adaptive clustering. Information Sciences, 511, 172-191.
    86. Ye, W., Zeng, Q., Peng, Y., Liu, Y., & Chang, C. C. (2022). A two-stage detection method of copy-move forgery based on parallel feature fusion. EURASIP Journal on Wireless Communications and Networking, 2022(1), 30.
    87. Yerushalmy, I., & Hel-Or, H. (2011). Digital image forgery detection based on lens and sensor aberration. International journal of computer vision, 92, 71-91.
    88. Yuan, X., Li, X., & Liu, T. (2021). Gauss–Jordan elimination-based image tampering detection and self-recovery. Signal Processing: Image Communication, 90, 116038.
    89. Zhang, D., Chen, X., Li, F., Sangaiah, A. K., & Ding, X. (2020). Seam-carved image tampering detection based on the cooccurrence of adjacent lbps. Security and Communication Networks, 2020, 1-12.
    90. Zhao, K., Yuan, X., Liu, T., Xiang, Y., Xie, Z., Huang, G., & Feng, L. (2024). CAMU-Net: Copy-move forgery detection utilizing coordinate attention and multiscale feature fusion-based up-sampling. Expert Systems with Applications, 238, 121918.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Timothy, D. P., & Santra, A. K. (2024). Unveiling image forgery with cutting-edge techniques-a survey. Multidisciplinary Reviews, 7(10), 2024220. https://doi.org/10.31893/multirev.2024220
  • Article viewed - 324
  • PDF downloaded - 149