• Abstract

    This study offers a comprehensive exploration of recommender systems (RSs) with a focus on their influence on consumers’ purchase intentions in the realm of e-commerce. Employing the Scientific Procedures and Rationales for Systematic Literature Reviews (SPAR-4-SLR) method, the authors identified and evaluated 908 high-quality papers to systematically categorize RS. This paper outlines these categories and reviews major developments within them, identifying significant constructs influencing consumer purchasing decisions. The outcome is a conceptual framework illustrating the interrelationships among these constructs, providing a novel contribution to the literature. This framework lays the groundwork for future studies in the field and provides valuable insights for marketing professionals seeking to develop RS-based strategies.

  • References

    1. Abdul Hussien, F. T., Rahma, A. M. S., & Abdul Wahab, H. B. (2021). Recommendation Systems for E-commerce Systems An Overview. Journal of Physics: Conference Series, 1897(1). https://doi.org/10.1088/1742-6596/1897/1/012024
    2. Abdullah, N., Xu, Y., Geva, S., & Chen, J. (2010). Infrequent Purchased Product Recommendation Making based on User Behaviour and Opinions in E-commerce Sites. 2010 IEEE International Conference on Data Mining Workshops, 1084–1091. https://doi.org/10.1109/ICDMW.2010.116
    3. Adomavicius, G., Bockstedt, J. C., Curley, S. P., Zhang, J., & Adomavicius, G. (2013). Do Recommender Systems Manipulate Consumer Preferences ? A Study of Anchoring Effects Do Recommender Systems Manipulate Consumer Preferences ? A Study of Anchoring Effects. Information Systems Research, 24(May 2015), 956–975. https://doi.org/http:// dx.doi.org/10.1287/isre.2013.0497
    4. Adomavicius, G., Huang, Z., & Tuzhilin, A. (2008). Personalization and Recommender Systems. In State-of-the-Art Decision-Making Tools in the Information-Intensive Age (Issue July 2016). https://doi.org/10.1287/educ.1080.0044
    5. Adomavicius, G., & Tuzhilin, A. (2005). Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 17(6), 377. https://doi.org/10.1109/TKDE.2005.99
    6. Akkucuk, U., & Esmaeili, J. (2016). The Impact of Brands on Consumer Buying Behavior. International Journal of Research in Business and Social Science, 5(4), 1–16. https://doi.org/10.20525/ijrbs.v5i4.551
    7. Alamdari, P. M., Navimipour, N. J., Hosseinzadeh, M., Safaei, A. A., & Darwesh, A. (2020). A Systematic Study on the Recommender Systems in the E-Commerce. IEEE Access, 8, 115694–115716. https://doi.org/10.1109/ACCESS.2020.3002803
    8. Alhijawi, B., & Kilani, Y. (2020). A collaborative filtering recommender system using genetic algorithm. Information Processing and Management, 57(6), 102310. https://doi.org/10.1016/j.ipm.2020.102310
    9. Alyari, F., & Jafari Navimipour, N. (2018). Recommender systems: A systematic review of the state of the art literature and suggestions for future research. Kybernetes, 47(5), 985–1017. https://doi.org/10.1108/K-06-2017-0196
    10. Aprilianti, M., Mahendra, R., & Budi, I. (2017). Implementation of weighted parallel hybrid recommender systems for e-commerce in Indonesia. 2016 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2016, 321–326. https://doi.org/10.1109/ICACSIS.2016.7872772
    11. Badriyah, T., Wijayanto, E. T., Syarif, I., & Kristalina, P. (2017). A hybrid recommendation system for E-commerce based on product description and user profile. 7th International Conference on Innovative Computing Technology, INTECH 2017, Intech, 95–100. https://doi.org/10.1109/INTECH.2017.8102435
    12. Batra, R., & Ahtola, O. (1991). Measuring the Hedonic and Utilitarian Sources of Consumer Attitudes. MArketing Letters, 2(2), 159–170. https://doi.org/https://doi.org/10.1007/BF00436035
    13. Baum, D., & Spann, M. (2014). The interplay between online consumer reviews and recommender systems: An experimental analysis. In International Journal of Electronic Commerce (Vol. 19, Issue 1, pp. 129–162). M.E. Sharpe Inc. https://doi.org/10.2753/JEC1086-4415190104
    14. Beel, J., Gipp, B., Langer, S., Breitinger, C., & Breitinger, C. (2016). Research-paper recommender systems : a literature survey. International Journal on Digital Libraries, 17(4), 305–338. https://doi.org/10.1007/s00799-015-0156-0
    15. Beladev, M., Rokach, L., & Shapira, B. (2016). Recommender systems for product bundling. Knowledge-Based Systems, 111, 193–206. https://doi.org/10.1016/j.knosys.2016.08.013
    16. Bjelica, M. (2010). Towards TV recommender system: Experiments with user modeling. IEEE Transactions on Consumer Electronics, 56(3), 1763–1769. https://doi.org/10.1109/TCE.2010.5606323
    17. Bobadilla, J., Serradilla, F., & Bernal, J. (2010). A new collaborative filtering metric that improves the behavior of recommender systems. Knowledge-Based Systems, 23(6), 520–528. https://doi.org/10.1016/j.knosys.2010.03.009
    18. Bobadilla, J., Serradilla, F., & Hernando, A. (2009). Collaborative filtering adapted to recommender systems of e-learning. Knowledge-Based Systems, 22(4), 261–265. https://doi.org/10.1016/j.knosys.2009.01.008
    19. Bokadia, S., & Jain, R. (2024). Metamorphosis of Recommender Systems: Progressive Inclusion of Consumers. IFIP Advances in Information and Communication Technology, 699 AICT, 324–341. https://doi.org/10.1007/978-3-031-50204-0_28
    20. Brusilovsky, P., & Kobsa, A. (2007). Case-Based Recommendation. The Adaptive Web, 4321(January 2007), 325-341–341. https://doi.org/10.1007/978-3-540-72079-9
    21. Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modelling and User-Adapted Interaction, 12(4), 331–370. https://doi.org/10.1023/A:1021240730564
    22. Çano, E., & Morisio, M. (2017). Hybrid recommender systems: A systematic literature review. Intelligent Data Analysis, 21(6), 1487–1524. https://doi.org/10.3233/IDA-163209
    23. Castellano, G., Fanelli, A. M., & Torsello, M. A. (2011). NEWER: A system for NEuro-fuzzy WEb recommendation. Applied Soft Computing Journal, 11(1), 793–806. https://doi.org/10.1016/j.asoc.2009.12.040
    24. Cazella, S. C., Reategui, E., & Alvares, L. O. C. (2006). E-commerce recommenders’ authority: Applying the user’s opinion relevance in recommender systems. ACM International Conference Proceeding Series, 192(April 2016), 71–78. https://doi.org/10.1145/1186595.1186605
    25. Cena, F., Gena, C., Grillo, P., Kuflik, T., Vernero, F., & Wecker, A. J. (2017). How scales influence user rating behaviour in recommender systems. Behaviour and Information Technology, 36(10), 985–1004. https://doi.org/10.1080/0144929X.2017.1322145
    26. Cha, N., Cho, H., Lee, S., & Hwang, J. (2019). Effect of AI Recommendation System on the Consumer Preference Structure in e-Commerce: Based on Two types of Preference. International Conference on Advanced Communication Technology, ICACT, 2019-Febru, 77–80. https://doi.org/10.23919/ICACT.2019.8701967
    27. Chadha, A., & Kaur, P. (2015). Comparative analysis of recommendation system. 2015 4th International Symposium on Emerging Trends and Technologies in Libraries and Information Services, ETTLIS 2015 - Proceedings, 1, 313–318. https://doi.org/10.1109/ETTLIS.2015.7048218
    28. Cheng, Y. S., Hsu, P. Y., & Liu, Y. C. (2018). Identifying and recommending user-interested attributes with values. Industrial Management and Data Systems, 118(4), 765–781. https://doi.org/10.1108/IMDS-04-2017-0164
    29. Chinchanachokchai, S., Thontirawong, P., & Chinchanachokchai, P. (2021). A tale of two recommender systems: The moderating role of consumer expertise on artificial intelligence based product recommendations. Journal of Retailing and Consumer Services, 61(September 2020), 102528. https://doi.org/10.1016/j.jretconser.2021.102528
    30. Choi, J., Lee, H. J., & Kim, H. W. (2017). Examining the effects of personalized App recommender systems on purchase intention: A self and social-interaction perspective. Journal of Electronic Commerce Research, 18(1), 73–102. https://www.scopus.com/record/display.uri?eid=2-s2.0-85021167503&origin=resultslist&sort=plf-f&src=s&st1=Examining+the+effects+of+personalized+App+recommender+systems+on+purchase+intention%3A+A+self+and+social-interaction+perspective&sid=790a0e9be898604ec
    31. Choi, J., Lee, H. J., & Kim, Y. C. (2011). The Influence of Social Presence on Customer Intention to Reuse Online Recommender Systems : The Roles of Personalization and Product Type. International Journal of Electronic Commerce, 16(1), 129–153. https://doi.org/10.2753/JEC1086-4415160105
    32. Christensen, I. A., & Schiaffino, S. (2014). Social influence in group recommender systems. Online Information Review, 38(4), 524–542. https://doi.org/10.1108/OIR-08-2013-0187
    33. Christidis, K., & Mentzas, G. (2013). A topic-based recommender system for electronic marketplace platforms. Expert Systems with Applications, 40(11), 4370–4379. https://doi.org/10.1016/j.eswa.2013.01.014
    34. Congying, G., Shengfeng, Q., Wessie, L., & Guofu, D. (2016). Apparel recommendation system evolution : an empirical review. International Journal of Clothing Science and Technology, 28(6), 854–879. https://www.emerald.com/insight/content/doi/10.1108/IJCST-09-2015-0100/full/html
    35. Crespo, R. G., Martínez, O. S., Lovelle, J. M. C., García-Bustelo, B. C. P., Gayo, J. E. L., & Pablos, P. O. De. (2011). Recommendation System based on user interaction data applied to intelligent electronic books. Computers in Human Behavior, 27(4), 1445–1449. https://doi.org/10.1016/j.chb.2010.09.012
    36. Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. Management Information Systems Research Center, University of Minnesota, 13(3), 319–340. https://doi.org/10.5962/bhl.title.33621
    37. Deng, F. (2015). Utility-based Recommender Systems Using Implicit Utility and Genetic Algorithm. Meic, 860–864. https://doi.org/10.2991/meic-15.2015.197
    38. Deng, J., Guo, J., & Wang, Y. (2019). Knowledge-Based Systems A Novel K-medoids clustering recommendation algorithm based on probability distribution for collaborative filtering. Knowledge-Based Systems, 175, 96–106. https://doi.org/10.1016/j.knosys.2019.03.009
    39. Deng, W. (2020). Leveraging consumer behaviors for product recommendation: an approach based on heterogeneous network. Electronic Commerce Research, 22(4), 1079–1105. https://doi.org/10.1007/s10660-020-09441-0
    40. Dong, F., Luo, J., Zhu, X., Wang, Y., & Shen, J. (2013). A personalized hybrid recommendation system oriented to E-commerce mass data in the cloud. Proceedings - 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013, 1020–1025. https://doi.org/10.1109/SMC.2013.178
    41. Fesenmaier, D, Werthner, H, & Wober, K. (2021). Behavioural Foundations and Applications. In Information Systems.
    42. Five types of Recommender System and their benefits. (n.d.). The App Solutions. https://theappsolutions.com/blog/development/recommender-systems-guide/
    43. Gao, T., Li, X., Chai, Y., & Tang, Y. (2017). Deep learning with consumer preferences for recommender system. 2016 IEEE International Conference on Information and Automation, IEEE ICIA 2016, August, 1556–1561. https://doi.org/10.1109/ICInfA.2016.7832066
    44. García-Crespo, Á., López-Cuadrado, J. L., Colomo-Palacios, R., González-Carrasco, I., & Ruiz-Mezcua, B. (2011). Sem-Fit: A semantic based expert system to provide recommendations in the tourism domain. Expert Systems with Applications, 38(10), 13310–13319. https://doi.org/10.1016/j.eswa.2011.04.152
    45. Gefen, D., Karahanna, E., & Staub, D. (2003). TRUST AND TAM IN ONLINE SHOPPING: AN INTEGRATED MODEL. MIS Quarterly, 27(1), 51–90.
    46. Gena, C., Brogi, R., Cena, F., & Vernero, F. (2011). The impact of rating scales on user’s rating behavior. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6787 LNCS, 123–134. https://doi.org/10.1007/978-3-642-22362-4_11
    47. Göksedef, M., & Gündüz-Öǧüdücü, Ş. (2010). Combination of Web page recommender systems. Expert Systems with Applications, 37(4), 2911–2922. https://doi.org/10.1016/j.eswa.2009.09.046
    48. Hamian, M., Darvishan, A., Hosseinzadeh, M., Lariche, M. J., Ghadimi, N., & Nouri, A. (2018). A framework to expedite joint energy-reserve payment cost minimization using a custom-designed method based on Mixed Integer Genetic Algorithm. Engineering Applications of Artificial Intelligence, 72(February), 203–212. https://doi.org/10.1016/j.engappai.2018.03.022
    49. Häubl, G., & Murray, K. B. (2003). Preference construction and persistence in digital marketplaces: The role of electronic recommendation agents. Journal of Consumer Psychology, 13(1–2), 75–91. https://doi.org/10.1207/s15327663jcp13-1&2_07
    50. He, M., Ren, C., & Zhang, H. (2014). Intent-based recommendation for B2C e-commerce platforms. IBM Journal of Research and Development, 58(5/6), 5:1-5:10. https://doi.org/10.1147/jrd.2014.2338091
    51. Heimbach, I., Gottschlich, J., & Hinz, O. (2015). The value of user ’ s Facebook profile data for product recommendation generation. Electron Markets, 25, 125–138. https://doi.org/10.1007/s12525-015-0187-9
    52. Huang, S. L. (2011). Designing utility-based recommender systems for e-commerce: Evaluation of preference-elicitation methods. Electronic Commerce Research and Applications, 10(4), 398–407. https://doi.org/10.1016/j.elerap.2010.11.003
    53. Huang, Y., Liu, H., Li, W., Wang, Z., Hu, X., & Wang, W. (2020). Lifestyles in Amazon: Evidence from online reviews enhanced recommender system. International Journal of Market Research, 62(6), 689–706. https://doi.org/10.1177/1470785319844146
    54. Hubert, M., & Kenning, P. (2008). A current overview of consumer neuroscience. Journal of Consumer Behaviour, 7, 272–292. https://doi.org/10.1002/cb.251
    55. Hwangbo, H., Kim, Y. S., & Cha, K. J. (2018). Recommendation system development for fashion retail e-commerce. Electronic Commerce Research and Applications, 28, 94–101. https://doi.org/10.1016/j.elerap.2018.01.012
    56. Iwanaga, J., Nishimura, N., Sukegawa, N., & Takano, Y. (2019). Electronic Commerce Research and Applications Improving collaborative filtering recommendations by estimating user preferences from clickstream data. Electronic Commerce Research and Applications, 37(October 2018), 100877. https://doi.org/10.1016/j.elerap.2019.100877
    57. Jeong, H. J., & Lee, M. (2013). Effects of recommendation systems on consumer inferences of website motives and attitudes towards a website. International Journal of Advertising, 32(4), 539–558. https://doi.org/10.2501/ija-32-4-539-558
    58. Jiao, M. H., Chen, X. F., Su, Z. H., & Chen, X. (2016). Research on personalized recommendation optimization of E-commerce system based on customer trade behaviour data. Proceedings of the 28th Chinese Control and Decision Conference, CCDC 2016, 6506–6511. https://doi.org/10.1109/CCDC.2016.7532169
    59. Karlgren, J. (1990). An algebra for Recommendations. The Systems Development and Artificial Intelligence Laboratory, 179.
    60. Khodabandehlou, S., Hashemi Golpayegani, S. A., & Zivari Rahman, M. (2021). An effective recommender system based on personality traits, demographics and behavior of customers in time context. Data Technologies and Applications, 55(1), 149–174. https://doi.org/10.1108/DTA-04-2020-0094
    61. Kim, Y. S., Hwangbo, H., Lee, H. J., & Lee, W. S. (2022). Sequence aware recommenders for fashion E-commerce. Electronic Commerce Research, October. https://doi.org/10.1007/s10660-022-09627-8
    62. Köhler, S. (2016). The impact of consumer preferences on the accuracy of collaborative filtering recommender systems. Electronic Markets, 26, 369–379. https://doi.org/10.1007/s12525-016-0232-3
    63. Ku, Y. C., & Tai, Y. M. (2013). What happens when recommendation system meets reputation system? the impact of recommendation information on purchase intention. Proceedings of the Annual Hawaii International Conference on System Sciences, 1376–1383. https://doi.org/10.1109/HICSS.2013.605
    64. Lee, D., & Hosanagar, K. (2021). How do product attributes and reviews moderate the impact of recommender systems through purchase stages? Management Science, 67(1), 524–546. https://doi.org/10.1287/mnsc.2019.3546
    65. Lepkowska-White, E. (2013). Are they listening? Designing online recommendations for today’s consumers. Journal of Research in Interactive Marketing, 7(3), 182–200. https://doi.org/10.1108/JRIM-07-2012-0027
    66. Li, L., Chen, J., & Raghunathan, S. (2018). Recommender system rethink: Implications for an electronic marketplace with competing manufacturers. Information Systems Research, 29(4), 1003–1023. https://doi.org/10.1287/ISRE.2017.0765
    67. Li, Y. H., Fan, Z. P., & Qiao, G. H. (2017). Product recommendation incorporating the consideration of product performance and customer service factors. Kybernetes, 46(10), 1753–1776. https://doi.org/10.1108/K-03-2017-0096
    68. Li, Y. I., & Wong, A. S. W. (2006). Overall comfort perception and preferences. Clothing Biosensory Engineering, 167–177. https://doi.org/10.1533/9781845691462.167
    69. Li, Y. M., Wu, C. Te, & Lai, C. Y. (2013). A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship. Decision Support Systems, 55(3), 740–752. https://doi.org/10.1016/J.DSS.2013.02.009
    70. Lin, Z. (2014). An Empirical Investigation of User and System Recommendations in E- Commerce. Decision Support Systems, 68, 111–124. https://doi.org/10.1016/j.dss.2014.10.003
    71. Lina, X., Abhijit, R., & Mihai, N. (2022). A Dual Process Model of the Influence of Recommender Systems on Purchase A Dual Process Model of the Influence of Recommender Systems on Purchase Intentions in Online Shopping Environments. Journal of Internet Commerce, 0(0), 1–22. https://doi.org/10.1080/15332861.2022.2049113
    72. Lorenzi, F., Bazzan, A. L. C., Abel, M., & Ricci, F. (2011). Improving recommendations through an assumption-based multiagent approach: An application in the tourism domain. Expert Systems with Applications, 38(12), 14703–14714. https://doi.org/10.1016/j.eswa.2011.05.010
    73. Ma, Y., Chen, G., & Wei, Q. (2017). Finding users preferences from large-scale online reviews for personalized recommendation. Electronic Commerce Research, 17(1), 3–29. https://doi.org/10.1007/s10660-016-9240-9
    74. Martínez-López, F. J., Esteban-Millat, I., Argila, A., & Rejón-Guardia, F. (2015). Consumers’ psychological outcomes linked to the use of an online store’s recommendation system. Internet Research, 25(4), 562–588. https://doi.org/10.1108/IntR-01-2014-0033
    75. Martínez-López, F. J., Esteban-Millat, I., Cabal, C. C., & Gengler, C. (2015). Psychological factors explaining consumer adoption of an e-vendor’s recommender. Industrial Management & Data Systems, 115(2), 284–310. https://doi.org/https://doi.org/10.1108/IMDS-10-2014-0306
    76. Martínez-López, F. J., Rodríguez-Ardura, I., Gázquez-Abad, J. C., Sánchez-Franco, M. J., & Cabal, C. C. (2010). Psychological elements explaining the consumer’s adoption and use of a website recommendation system: A theoretical framework proposal. Internet Research, 20(3), 316–341. https://doi.org/10.1108/10662241011050731
    77. McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing And Validating Trust Measure for E-Commerce: An Integrative Typology. Information System Research. Information Systems Research, 13(3), 334–359.
    78. McKnight, D. H., Cummings, L. L., & Chervany, N. L. (1998). Initial trust formation in new organizational relationships. Academy of Management Review, 23(3), 473–490. https://doi.org/10.5465/AMR.1998.926622
    79. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007
    80. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Systematic Reviews. http://www.systematicreviewsjournal.com/content/4/1/1%0ARESEARCH
    81. Monti, D., Rizzo, G., & Morisio, M. (2021). A systematic literature review of multicriteria recommender systems. Artificial Intelligence Review, 54(1), 427–468. https://doi.org/10.1007/s10462-020-09851-4
    82. Nguyen, P. (2021). The Effect Of Online Product Recommendation System On Consumer Behavior: Vietnameses E-Commerce Websites. SSRN Electronic Journal, January. https://doi.org/10.2139/ssrn.3761654
    83. Nilashi, M., Bagherifard, K., Ibrahim, O., & Alizadeh, H. (2013). Collaborative Filtering Recommender Systems. Research Journal of Applied Sciences, Engineering and Technology, September 2016. https://doi.org/10.19026/rjaset.5.4644
    84. Ochi, P., Rao, S., Takayama, L., & Nass, C. (2010). Predictors of user perceptions of web recommender systems: How the basis for generating experience and search product recommendations affects user responses. International Journal of Human Computer Studies, 68(8), 472–482. https://doi.org/10.1016/j.ijhcs.2009.10.005
    85. Panniello, U., Hill, S., & Gorgoglione, M. (2016). The impact of profit incentives on the relevance of online recommendations. Electronic Commerce Research and Applications, 20, 87–104. https://doi.org/10.1016/j.elerap.2016.10.003
    86. Park, J. H. (2019). Resource recommender system based on psychological user type indicator. Journal of Ambient Intelligence and Humanized Computing, 10(1), 27–39. https://doi.org/10.1007/s12652-017-0583-4
    87. Paul, J., Lim, W. M., O’Cass, A., Hao, A. W., & Bresciani, S. (2021). Scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR). International Journal of Consumer Studies, April, 1–16. https://doi.org/10.1111/ijcs.12695
    88. Priya, G. N., Murugan, K., & Sharmila, A. (2015). Developing Intellectual Patterns in Online Business to Customer Interaction with Dynamic Recommender System. International Conference on Information Communication and Embedded Systems (ICICES2014), 978, 1–5. https://doi.org/10.1109/ICICES.2014.7033851
    89. Pu, P., Chen, L., & Hu, R. (2011). A User-Centric Evaluation Framework for Recommender Systems. Journal of Petrology, 157–164. https://doi.org/10.1093/petrology/39.1.61
    90. Quiroga, L. M., & Mostafa, J. (2002). Evaluating interest profiles based on users’ judgment, interest change, and class specificity in the context of filtering medical documents. Proceedings of the ASIST Annual Meeting, 39(1997), 307–315. https://doi.org/10.1002/meet.1450390134
    91. Rich, E. (1979). User Modeling via Stereotypes *. COGNITIVE SCIENCE, 3, 329–354.
    92. Roudposhti, V. M., Nilashi, M., Mardani, A., Streimikiene, D., Samad, S., & Ibrahim, O. (2018). A new model for customer purchase intention in e-commerce recommendation agents. Journal of International Studies, 11(4), 237–253. https://doi.org/10.14254/2071-8330.2018/11-4/17
    93. Roy, D., & Dutta, M. (2022). A systematic review and research perspective on recommender systems. Journal of Big Data, 9(1). https://doi.org/10.1186/s40537-022-00592-5
    94. Salehi, M., & Kmalabadi, I. N. (2012). A Hybrid Attribute–based Recommender System for E–learning Material Recommendation. IERI Procedia, 2, 565–570. https://doi.org/10.1016/j.ieri.2012.06.135
    95. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2022). Item-based Collaborative Filtering Recommendation. International Journal of Advanced Computer Science and Applications, 13(7), 557–562. https://doi.org/10.14569/IJACSA.2022.0130766
    96. Schafer, J. Ben, Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. ACM International Conference Proceeding Series, 158–166. https://doi.org/10.1145/336992.337035
    97. Scholz, M., Dorner, V., Franz, M., & Hinz, O. (2015). Measuring Consumers’ Willingness-to-Pay with Utility-based Recommendation Systems. Decision Support Systems, 72, 60–71. https://doi.org/10.1016/j.dss.2015.02.006
    98. Shin, C., & Woo, W. (2009). Socially aware TV program recommender for multiple viewers. IEEE Transactions on Consumer Electronics, 55(2), 927–932. https://doi.org/10.1109/TCE.2009.5174476
    99. Virdi, P., Kalro, A. D., & Sharma, D. (2020). Consumer acceptance of social recommender systems in India. Online Information Review, 44(3), 723–744. https://doi.org/10.1108/OIR-05-2018-0177
    100. Wakil, K., Alyari, F., Ghasvari, M., Lesani, Z., & Rajabion, L. (2020). A new model for assessing the role of customer behavior history, product classification, and prices on the success of the recommender systems in e-commerce. Kybernetes, 49(5), 1325–1346. https://doi.org/10.1108/K-03-2019-0199
    101. Wang, S. L., & Wu, C. Y. (2011). Application of context-aware and personalized recommendation to implement an adaptive ubiquitous learning system. Expert Systems with Applications, 38(9), 10831–10838. https://doi.org/10.1016/j.eswa.2011.02.083
    102. Wu, L. L., Joung, Y. J., & Lee, J. (2013). Recommendation systems and consumer satisfaction online: Moderating effects of consumer product awareness. Proceedings of the Annual Hawaii International Conference on System Sciences, 2753–2762. https://doi.org/10.1109/HICSS.2013.461
    103. Yadav, R., Choorasiya, A., Singh, U., Khare, P., & Pahade, P. (2018). A Recommendation System for E-Commerce Base on Client Profile. Proceedings of the 2nd International Conference on Trends in Electronics and Informatics, ICOEI 2018, Icoei, 1316–1322. https://doi.org/10.1109/ICOEI.2018.8553930
    104. Yan, Q., Zhang, L., Li, Y., Wu, S., Sun, T., Wang, L., & Chen, H. (2016). Effects of product portfolios and recommendation timing in the efficiency of personalized recommendation. Journal of Consumer Behaviour, 15(6), 516–526. https://doi.org/10.1002/cb.1588
    105. Yang, D. H., & Gao, X. (2017). Online retailer recommender systems: a competitive analysis. International Journal of Production Research, 55(14), 4089–4109. https://doi.org/10.1080/00207543.2016.1253888
    106. Yang, X. (2020). Influence of informational factors on purchase intention in social recommender systems. Online Information Review, 44(2), 417–431. https://doi.org/10.1108/OIR-12-2016-0360
    107. Yeung, C. H. (2015). Do recommender systems benefit users? July. https://doi.org/10.1088/1742-5468/2016/04/043401
    108. Yi, J., Zhang, L., & Phelan, C. A. (2016). A novel recommendation strategy for user-based collaborative filtering in intelligent marketing. Journal of Digital Information Management, 14(2), 81–91.
    109. Yin, C., Guo, Y., Yang, J., & Ren, X. (2018). A new recommendation system on the basis of consumer initiative decision based on an associative classification approach. Industrial Management and Data Systems, 118(1), 188–203. https://doi.org/10.1108/IMDS-02-2017-0057
    110. Yoshii, K., Goto, M., Komatani, K., Ogata, T., & Okuno, H. G. (2008). An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model. IEEE Transactions on Audio, Speech and Language Processing, 16(2), 435–447. https://doi.org/10.1109/TASL.2007.911503
    111. Yuan, S. T., & Yang, C. Y. (2017). Service recommender system based on emotional features and social interactions. Kybernetes, 46(2), 236–255. https://doi.org/10.1108/K-01-2016-0014
    112. Yunhui, H., Jiang, W., & Zhijie, L. (2022). Complements are Warm and Substitutes Are Competent: The Effect of Recommendation Type on Focal Product Evaluation. Internet Research, 32(4), 1168–1190. https://doi.org/https://doi.org/10.1108/INTR-09-2020-0510
    113. Zhang, M., & Bockstedt, J. (2020). Complements and substitutes in online product recommendations: The differential effects on consumers’ willingness to pay. Information and Management, 57(6), 103341. https://doi.org/10.1016/j.im.2020.103341
    114. Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex and Intelligent Systems, 7(1), 439–457. https://doi.org/10.1007/s40747-020-00212-w
    115. Zhang, Y. C., Séaghdha, D. Ó., Quercia, D., & Jambor, T. (2012). Auralist: Introducing serendipity into music recommendation. WSDM 2012 - Proceedings of the 5th ACM International Conference on Web Search and Data Mining, 13–22. https://doi.org/10.1145/2124295.2124300
    116. Zhao, X., Gu, T., Liu, J., & Tian, B. (2018). The marketing effects of recommender systems in a B2C e-commerce context: A review and future directions. Proceedings of the International Conference on Electronic Business (ICEB), 2018-Decem, 665–672.
    117. Zhou, C., Leng, M., Liu, Z., Cui, X., & Yu, J. (2022). The impact of recommender systems and pricing strategies on brand competition and consumer search. Electronic Commerce Research and Applications, 53(January), 101–144. https://doi.org/10.1016/j.elerap.2022.101144
    118. Zhu, X., Huang, J., & Shi, M. (2010). An intelligent on-line recommendation system in B2C apparel e-commerce. Proceedings of the International Conference on E-Business and E-Government, ICEE 2010, 2213–2216. https://doi.org/10.1109/ICEE.2010.559
    119. Ziarani, R. J., & Ravanmehr, R. (2021). Serendipity in Recommender Systems: A Systematic Literature Review. Journal of Computer Science and Technology, 36(2), 375–396. https://doi.org/10.1007/s11390-020-0135-9

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Malque Publishing

How to cite

Bokadia, S., Jain, R., & Singhi, R. (2024). Recommender systems: A systematic literature review, synthesis and framework for future capabilities. Multidisciplinary Reviews, 7(7), 2024157. https://doi.org/10.31893/multirev.2024157
  • Article viewed - 290
  • PDF downloaded - 62