• Abstract

    Drug abuse is a complex phenomenon with significant social, economic, and health implications worldwide. Understanding the molecular mechanisms underlying addiction is crucial for developing effective prevention and treatment strategies. Epigenetic modifications, particularly DNA methylation and histone modifications, have emerged as key regulators of gene expression in the context of drug addiction. This review provides an overview of the role of DNA methylation and histone modification in drug abuse, highlighting their involvement in the development, maintenance, and relapse of addiction. Recent advancements in the field, including insights into specific epigenetic changes associated with different classes of drugs and their impact on neuronal plasticity and behavior, are discussed. Furthermore, we explore the potential of targeting epigenetic mechanisms as therapeutic interventions for substance use disorders. A comprehensive understanding of the epigenetic regulation of addiction holds promise for the development of novel and personalized approaches to tackle drug abuse.

  • References

    1. McLellan AT, Lewis DC, O'brien CP, Kleber HD. Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. Jama. 2000 Oct 4;284(13):1689-95.
    2. Kassani A, Niazi M, Hassanzadeh J, Menati R. Survival analysis of drug abuse relapse in addiction treatment centers. International journal of high risk behaviors & addiction. 2015 Sep;4(3).
    3. Dua J. The Problem of Drug addiction in India: Its Consequences and Effective measures. Journal of Drug Delivery and Therapeutics. 2022 Feb 15;12(1-S):159-63.
    4. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature genetics. 2003 Mar;33(3):245-54.
    5. Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 1999 Aug 6;98(3):285-94.
    6. Kouzarides T. Chromatin modifications and their function. Cell. 2007 Feb 23;128(4):693-705. AP. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;
    7. Bird 321(6067):209-13.
    8. EI C. Reinberg D histones: annotating chromatin. Annu Rev Genet. 2009;43:559-99.
    9. Fedorova E, Zink D. Nuclear architecture and gene regulation. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2008 Nov 1;1783(11):2174-84.
    10. Martin C, Zhang Y. Mechanisms of epigenetic inheritance. Current opinion in cell biology. 2007 Jun 1;19(3):266-72.
    11. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends in biochemical sciences. 2006 Feb 1;31(2):89-97.
    12. Subramaniam D, Thombre R, Dhar A, Anant S. DNA methyltransferases: a novel target for prevention and therapy. Frontiers in oncology. 2014 May 1;4:80.
    13. Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991 Mar 22;64(6):1123-34.
    14. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998 May 28;393(6683):386-9.
    15. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F. An integrated encyclopedia of DNA elements in the human genome. Nature [Internet].
    16. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annual review of biochemistry. 2012 Jul 7;81:145-66.
    17. Ambros V. The functions of animal microRNAs. Nature. 2004 Sep 16;431(7006):350-5.
    18. SM. An overview of microRNAs. Advanced drug delivery reviews. 2015 Jun 29; Hammond 87:3-14.
    19. Dolganiuc A, Petrasek J, Kodys K, Catalano D, Mandrekar P, Velayudham A, Szabo G. MicroRNA expression profile in Lieber‐DeCarli diet‐induced alcoholic and methionine choline deficient diet‐induced nonalcoholic steatohepatitis models in mice. Alcoholism: Clinical and Experimental Research. 2009 Oct;33(10):1704-10.
    20. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature genetics. 2003 Mar;33(3):245-54.
    21. Henikoff S, Matzke MA. Exploring and explaining epigenetic effects. Trends in Genetics. 1997;8(13):293-5.
    22. Renthal W, Nestler EJ. Epigenetic mechanisms in drug addiction. Trends in molecular medicine. 2008 Aug 1;14(8):341-50.
    23. Zhang TY, Meaney MJ. Epigenetics and the environmental regulation of the genome and its function. Annual review of psychology. 2010 Jan 10;61:439-66.
    24. Sun J, Sun J, Ming GL, Song H. Epigenetic regulation of neurogenesis in the adult mammalian brain. European Journal of Neuroscience. 2011 Mar;33(6):1087-93.
    25. Kalivas PW, O'Brien C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology. 2008 Jan;33(1):166-80.
    26. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nature reviews neuroscience. 2001 Feb 1;2(2):119-28.
    27. Shaham Y, Hope BT. The role of neuroadaptations in relapse to drug seeking. Nature neuroscience. 2005 Nov 1;8(11):1437-9.
    28. Nestler EJ, Barrot M, Self DW. ΔFosB: a sustained molecular switch for addiction. Proceedings of the National Academy of Sciences. 2001 Sep 25;98(20):11042-6.
    29. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci.. 2006 Jul 21;29:565-98.
    30. Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML, Lanier SM, Kalivas PW. Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron. 2004 Apr 22;42(2):269-81.
    31. Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nature neuroscience. 2007 Aug;10(8):1029-37.
    32. Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. Journal of Neuroscience. 2003 Feb 1;23(3):742-7.
    33. Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. Journal of Neuroscience. 2004 Feb 18;24(7):1604-11.
    34. Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience. 2005 Feb 1;6(2):108-18.
    35. Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P, Malone LM, Sweatt JD. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. Journal of Biological Chemistry. 2006 Jun 9;281(23):15763-73.
    36. Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron. 2007 Mar 15;53(6):857-69.
    37. Levenson JM, O'Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry. 2004 Sep 24;279(39):40545-59.
    38. Alarcón JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron. 2004 Jun 24;42(6):947-59.
    39. Jenuwein T, Allis CD. Translating the histone code. Science. 2001 Aug 10;293(5532):1074-80.
    40. Rogge GA, Wood MA. The role of histone acetylation in cocaine-induced neural plasticity and behavior. Neuropsychopharmacology. 2013 Jan;38(1):94-110.
    41. Sadri-Vakili G. Cocaine triggers epigenetic alterations in the corticostriatal circuit. Brain research. 2015 Dec 2;1628:50-9.
    42. Walker DM, Cates HM, Heller EA, Nestler EJ. Regulation of chromatin states by drugs of abuse. Current opinion in neurobiology. 2015 Feb 1;30:112-21.
    43. Maze I, Covington III HE, Dietz DM, LaPlant Q, Renthal W, Russo SJ, Mechanic M, Mouzon E, Neve RL, Haggarty SJ, Ren Y. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science. 2010 Jan 8;327(5962):213-6.
    44. Anderson EM, Larson EB, Guzman D, Wissman AM, Neve RL, Nestler EJ, Self DW. Overexpression of the histone dimethyltransferase G9a in nucleus accumbens shell increases cocaine self-administration, stress-induced reinstatement, and anxiety. Journal of Neuroscience. 2018 Jan 24;38(4):803-13.
    45. Kennedy PJ, Feng J, Robison AJ, Maze I, Badimon A, Mouzon E, Chaudhury D, Damez-Werno DM, Haggarty SJ, Han MH, Bassel-Duby R. Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nature neuroscience. 2013 Apr;16(4):434-40.
    46. Maze I, Chaudhury D, Dietz DM, Von Schimmelmann M, Kennedy PJ, Lobo MK, Sillivan SE, Miller ML, Bagot RC, Sun H, Turecki G. G9a influences neuronal subtype specification in striatum. Nature neuroscience. 2014 Apr;17(4):533-9.
    47. Maze I, Feng J, Wilkinson MB, Sun H, Shen L, Nestler EJ. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proceedings of the National Academy of Sciences. 2011 Feb 15;108(7):3035-40.
    48. Sun H, Maze I, Dietz DM, Scobie KN, Kennedy PJ, Damez-Werno D, Neve RL, Zachariou V, Shen L, Nestler EJ. Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. Journal of Neuroscience. 2012 Nov 28;32(48):17454-64.
    49. Damez-Werno DM, Sun H, Scobie KN, Shao N, Rabkin J, Dias C, Calipari ES, Maze I, Pena CJ, Walker DM, Cahill ME. Histone arginine methylation in cocaine action in the nucleus accumbens. Proceedings of the National Academy of Sciences. 2016 Aug 23;113(34):9623-8.
    50. Chandrasekar V, Dreyer JL. microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Molecular and Cellular Neuroscience. 2009 Nov 1;42(4):350-62.
    51. Chandrasekar V, Dreyer JL. Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology. 2011 May;36(6):1149-64.
    52. Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ. Striatal microRNA controls cocaine intake through CREB signalling. Nature. 2010 Jul 8;466(7303):197-202.
    53. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nature reviews neuroscience. 2011 Nov;12(11):623-37.
    54. Eipper-Mains JE, Kiraly DD, Palakodeti D, Mains RE, Eipper BA, Graveley BR. microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. Rna. 2011 Aug 1;17(8):1529-43.
    55. Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron. 2008 Jul 31;59(2):274-87.
    56. Michelhaugh SK, Lipovich L, Blythe J, Jia H, Kapatos G, Bannon MJ. Mining Affymetrix microarray data for long non‐coding RNAs: altered expression in the nucleus accumbens of heroin abusers. Journal of neurochemistry. 2011 Feb;116(3):459-66.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Multidisciplinary Reviews

How to cite

Vagga, A., Jankar, J. S., Ganjare, R., & Makhe, P. (2024). Role of DNA Methylation and Histone Modification in Drug Abuse: Overview and Recent Updates. Multidisciplinary Reviews, (| Accepted Articles). Retrieved from https://malque.pub/ojs/index.php/mr/article/view/2562
  • Article viewed - 119