• Abstract

    The functional integrity of the nervous system is monitored using a method known as Intraoperative Neuromonitoring (IONM) during surgical operations. Utilizing devices positioned on the patient's skin or within their muscles, IONM normally entails monitoring the electrical activity of nerves or muscles. The surgical technique used during the cervical spine treatment can influence the quality of IONM. Surgeons who are experienced in IONM and have a good understanding of the anatomy and physiology of the cervical spine are more likely to obtain accurate and reliable IONM signals. The signals are transmitted to a monitoring system that provides real-time feedback to the surgical team. This feedback can alert the team to potential nerve damage, allowing them to make adjustments to the surgical technique or take other steps to protect the nerves. Patient factors such as age, medical history, and comorbidities can influence the quality of IONM. For instance, patients with pre-existing neurological conditions or those who are elderly may have a higher risk of neurological damage during the surgery, which can affect the quality of IONM. The use of IONM for Anterior Cervical Spinal Surgery (ACSS) has been widely researched across a number of medical reference sources. Research on behind cervical surgery were neglected to take into consideration.

  • References

    1. Asquini, G., Rushton, A., Pitance, L., Heneghan, N. and Falla, D., (2021). The effectiveness of manual therapy applied to craniomandibular structures in the treatment of temporomandibular disorders: protocol for a systematic review. Systematic Reviews, 10(1), pp.1-7. 10.1186/s13643-021-01623-7
    2. Baro, V., Moiraghi, A., Carlucci, V., Paun, L., Anglani, M., Ermani, M., Saladino, A., Chioffi, F., d’Avella, D., Landi, A. and Bartoli, A., (2021). Spinal meningiomas: Influence of cord compression and radiological features on preoperative functional status and outcome. Cancers, 13(16), p.4183.10.3390/cancers13164183
    3. Charalampidis, A., Jiang, F., Wilson, J.R., Badhiwala, J.H., Brodke, D.S. and Fehlings, M.G., (2020). The use of intraoperative neurophysiological monitoring in spine surgery. Global spine journal, 10(1_suppl), pp.104S-114S. 10.1016/j.inat.2021.101281
    4. Di Martino, A., Papalia, R., Caldaria, A., Torre, G., Denaro, L. and Denaro, V., (2019). Should evoked potential monitoring be used in degenerative cervical spine surgery? A systematic review. Journal of Orthopaedics and Traumatology, 20, pp.1-8. 10.1186/s10195-019-0524-4
    5. Fei, Y., Li, Y., Chen, F. and Tian, W., (2022). Intraoperative neuromonitoring of the recurrent laryngeal nerve is indispensable during complete endoscopic radical resection of thyroid cancer: A retrospective study. Laryngoscope Investigative Otolaryngology, 7(4), pp.1217-1223. 10.1002/lio2.822
    6. Funaba, M., Kanchiku, T., Kobayashi, K., Yoshida, G., Machino, M., Yamada, K., Shigematsu, H., Tadokoro, N., Ushirozako, H., Takahashi, M. and Yamamoto, N., (2022). The utility of Transcranial Stimulated Motor-Evoked potential alerts in cervical spine surgery varies based on Preoperative Motor Status. Spine, 47(23), pp.1659-1668.10.1097/BRS.0000000000004448
    7. George, J., Das, S., Egger, A.C., Chambers, R.C., Kuivila, T.E. and Goodwin, R.C., (2019). Influence of intraoperative neuromonitoring on the outcomes of surgeries for pediatric scoliosis in the United States. Spine Deformity, 7(1), pp.27-32. 10.1016/j.jspd.2018.05.013
    8. Goodrum, H., Roberts, K. and Bernstam, E.V., (2020). Automatic classification of scanned electronic health record documents. International journal of medical informatics, 144, p.104302.10.1016/j.ijmedinf.2020.104302
    9. Guiroy, A., Valacco, M., Gagliardi, M., Cabrera, J.P., Emmerich, J., Willhuber, G.C. and Falavigna, A., (2020). Barriers of neurophysiology monitoring in spine surgery: Latin America experience. Surgical Neurology International, 11.10.25259%2FSNI_44_2020
    10. Halsey, M.F., Myung, K.S., Ghag, A., Vitale, M.G., Newton, P.O. and de Kleuver, M.,( 2020). Neurophysiological monitoring of spinal cord function during spinal deformity surgery: 2020 SRS neuromonitoring information statement. Spine Deformity, 8, pp.591-596.10.1007/s43390-020-00140-2
    11. Han, S.S., Azad, T.D., Suarez, P.A. and Ratliff, J.K., (2019). A machine learning approach for predictive models of adverse events following spine surgery. The Spine Journal, 19(11), pp.1772-1781.10.1016/j.spinee.2019.06.018
    12. Hatef J, Katzir M, Toop N, (2020). Damned if you monitor, damned if you don’t: medical malpractice and intraoperative neuromonitoring for spinal surgery. Neurosurg Focus;49(5):E19.10.3171/2020.8.FOCUS20580
    13. Ichino, T., Tanaka, S., Tanaka, R., Tanaka, N., Ishida, T., Sugiyama, Y. and Kawamata, M., (2019). Transcranial motor-evoked potentials of laryngeal muscles for intraoperative neuromonitoring of the vagus nerve during thyroid surgery. Journal of anesthesia, 33, pp.221-229. 10.1007/s00540-018-2601-x
    14. Jesse, C.M., Alvarez Abut, P., Wermelinger, J., Raabe, A., Schär, R.T. and Seidel, K., (2022). Functional Outcome in Spinal Meningioma Surgery and Use of Intraoperative Neurophysiological Monitoring. Cancers, 14(16), p.3989.10.3390/cancers14163989
    15. Jorge, A., Zhou, J., Dixon, E.C., Hamilton, K.D., Balzer, J. and Thirumala, P., (2019). Area under the curve of somatosensory evoked potentials detects spinal cord injury. Journal of Clinical Neurophysiology, 36(2), pp.155-160. 10.1097/WNP.0000000000000563
    16. Karhade, A.V., Bongers, M.E., Groot, O.Q., Kazarian, E.R., Cha, T.D., Fogel, H.A., Hershman, S.H., Tobert, D.G., Schoenfeld, A.J., Bono, C.M. and Kang, J.D., (2020). Natural language processing for automated detection of incidental durotomy. The Spine Journal, 20(5), pp.695-700. 10.1016/j.spinee.2019.12.006
    17. Karpathiotakis, M., D’Orazi, V., Ortensi, A., Biancucci, A., Melcarne, R., Borcea, M.C., Scorziello, C. and Tartaglia, F., (2022). Intraoperative Neuromonitoring and Optical Magnification in the Prevention of Recurrent Laryngeal Nerve Injuries during Total Thyroidectomy. Medicina, 58(11), p.1560.10.3390/medicina58111560
    18. Laratta JL, Shillingford JN, Ha A, J Spine Surg (Hong Kong) (2018). Utilization of intraoperative neuromonitoring throughout the United States over a recent decade: an analysis of the nationwide inpatient Sample.4(2):211–19. 10.21037%2Fjss.2018.04.05
    19. Leiter, R.E., Santus, E., Jin, Z., Lee, K.C., Yusufov, M., Chien, I., Ramaswamy, A., Moseley, E.T., Qian, Y., Schrag, D. and Lindvall, C., (2020). Deep natural language processing to identify symptom documentation in clinical notes for patients with heart failure undergoing cardiac resynchronization therapy. Journal of Pain and Symptom Management, 60(5), pp.948-958.10.1016/j.jpainsymman.2020.06.010
    20. Levin, D.N., Strantzas, S. and Steinberg, B.E., (2019). Intraoperative neuromonitoring in paediatric spinal surgery. BJA education, 19(5), p.165.10.1016%2Fj.bjae.2019.01.007
    21. Nasi, D., Meletti, S., Tramontano, V. and Pavesi, G., (2020). Intraoperative neurophysiological monitoring in aneurysm clipping: does it make a difference? A systematic review and meta-analysis. Clinical Neurology and Neurosurgery, 196, p.105954.10.1016/j.clineuro.2020.105954
    22. Rao, S., Kurfess, J. and Treggiari, M.M., (2021). Basics of Neuromonitoring and Anesthetic Considerations. Anesthesiology Clinics, 39(1), pp.195-209.10.1016/j.anclin.2020.11.009
    23. Sanders, B., Catania, S. and Luoma, A.M., (2020). Principles of intraoperative neurophysiological monitoring and anaesthetic considerations. Anaesthesia& Intensive Care Medicine, 21(1), pp.39-44. 10.1016/j.mpaic.2019.10.020
    24. Siddharth, M. and Shylaja, D., (2021). Total Intravenous Anaesthesia for Intra-Operative Neurophysiological Monitoring. Annals of the Romanian Society for Cell Biology, pp.3943-3948.10.1155/2022/2381063
    25. Suresh, V., Ushakumari, P.R., Pillai, C.M., Kutty, R.K., Prabhakar, R.B. and Peethambaran, A., (2021). Implementation and adherence to a speciality-specific checklist for neurosurgery and its influence on patient safety. Indian Journal of Anaesthesia, 65(2), p.108.10.4103%2Fija.IJA_419_20
    26. Toki, T., Fujita, N., Ichikawa, T., Ochi, N., Yokota, I., Sudo, H. and Morimoto, Y., (2022). Intraoperative factors influencing transcranial motor-evoked potential measurements using higher frequency multi-train stimulation in adolescent scoliosis surgery: A prospective observational study. 10.21203/rs.3.rs-1602890/v1
    27. Udelsman, B.V., Moseley, E.T., Sudore, R.L., Keating, N.L. and Lindvall, C., (2020). Deep natural language processing identifies variation in care preference documentation. Journal of Pain and Symptom Management, 59(6), pp.1186-1194. 10.1016/j.jpainsymman.2019.12.374
    28. Wi, S.M., Lee, H.J., Kang, T., Chang, S.Y., Kim, S.M., Chang, B.S., Lee, C.K. and Kim, H., (2020). Clinical significance of improved intraoperative neurophysiological monitoring signal during spine surgery: a retrospective study of a single-institution prospective cohort. Asian spine journal, 14(1), p.79. 10.31616%2Fasj.2019.0025
    29. Wilent, W.B., Rhee, J.M., Harrop, J.S., Epplin-Zapf, T., Bose, M., Tesdahl, E.A., Cohen, J. and Sestokas, A.K., (2020). Therapeutic impact of traction release after C5 nerve root motor evoked potential (MEP) alerts in cervical spine surgery. Clinical Spine Surgery, 33(10), E442-E447. DOI: 10.1097/BSD.0000000000000969
    30. Zhang, X., Hu, H., Yan, R., Li, T., Wang, W. and Yang, W., (2022). Effects of rocuronium dosage on intraoperative neurophysiological monitoring in patients undergoing spinal surgery. Journal of Clinical Pharmacy and Therapeutics, 47(3), pp.313-320.10.1111/jcpt.13557

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Malque Publishing

How to cite

Borges, J., Panda, S., Jayaraman, G., Codru, I. R., Sirisha, C., & Andhale, A. (2024). Determinants influencing intraoperative neuromonitoring quality during cervical spine treatment: A systematic review. Multidisciplinary Reviews, 6, 2023ss020. https://doi.org/10.31893/multirev.2023ss020
  • Article viewed - 110
  • PDF downloaded - 63