• Abstract

    This comprehensive review explored the evolving landscape of biomarkers of acute kidney injury (AKI), emphasizing their critical role in early detection, monitoring, and prognostication. The examination included functional biomarkers (serum cystatin C, NGAL, KIM-1), tubular injury biomarkers (NAG, L-FABP, and IL-18), inflammatory biomarkers (CRP, TNF-α, and IL-6), and oxidative stress biomarkers (MDA, SOD, and catalase). These biomarkers offer nuanced insights into specific facets of renal injury, aiding in differentiating prerenal and intrinsic renal injury and providing a more holistic understanding of AKI pathophysiology. The implications for clinical practice are profound, with biomarkers presenting valuable tools for personalized patient management, early intervention, and improved outcomes. Future research directions should focus on identifying emerging biomarkers, technological advancements, refining integration strategies, and addressing standardization and cost-effectiveness for seamless integration into routine clinical practice. This comprehensive approach positions AKI biomarkers as pivotal in advancing diagnostic precision and intervention strategies in the dynamic landscape of acute kidney injury.

  • References

    1. Basu, R. K., Wong, H. R., Krawczeski, C. D., Wheeler, D. S., Manning, P. B., Chawla, L. S., Devarajan, P., & Goldstein, S. L. (2014). Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery. Journal of the American College of Cardiology, 64(25), 2753–2762. https://doi.org/10.1016/j.jacc.2014.09.066
    2. Brazzelli, M., Aucott, L., Aceves-Martins, M., Robertson, C., Jacobsen, E., Imamura, M., Poobalan, A., Manson, P., Scotland, G., Kaye, C., Sawhney, S., & Boyers, D. (2022). Biomarkers for assessing acute kidney injury for people who are being considered for admission to critical care: A systematic review and cost-effectiveness analysis. Health Technology Assessment (Winchester, England), 26(7), 1–286. https://doi.org/10.3310/UGEZ4120
    3. Chen, S., Li, Y., & Su, B. (2023). Acute Kidney Failure: Current Challenges and New Perspectives. Journal of Clinical Medicine, 12(10), 3363. https://doi.org/10.3390/jcm12103363
    4. Devarajan, P. (2008). Emerging urinary biomarkers in the diagnosis of acute kidney injury. Expert Opinion on Medical Diagnostics, 2(4), 387–398. https://doi.org/10.1517/17530059.2.4.387
    5. Devarajan, P. (2011). Biomarkers for the early detection of acute kidney injury. Current Opinion in Pediatrics, 23(2), 194–200. https://doi.org/10.1097/MOP.0b013e328343f4dd
    6. Edelstein, C. L. (2008). Biomarkers of acute kidney injury. Advances in Chronic Kidney Disease, 15(3), 222–234. https://doi.org/10.1053/j.ackd.2008.04.003
    7. Gaweł, S., Wardas, M., Niedworok, E., & Wardas, P. (2004). Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci Lekarskie (Warsaw, Poland: 1960), 57(9–10), 453–455. https://europepmc.org/article/med/15765761
    8. Goyal, A., Daneshpajouhnejad, P., Hashmi, M. F., & Bashir, K. (2024). Acute Kidney Injury. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK441896/
    9. Haase-Fielitz, A., Haase, M., & Devarajan, P. (2014). Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: A critical evaluation of current status. Annals of Clinical Biochemistry, 51(Pt 3), 335–351. https://doi.org/10.1177/0004563214521795
    10. Han, W. K., Bailly, V., Abichandani, R., Thadhani, R., & Bonventre, J. V. (2002). Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney International, 62(1), 237–244. https://doi.org/10.1046/j.1523-1755.2002.00433.x
    11. Hasson, D., Menon, S., & Gist, K. M. (2022). Improving acute kidney injury diagnostic precision using biomarkers. Practical Laboratory Medicine, 30, e00272. https://doi.org/10.1016/j.plabm.2022.e00272
    12. Hirooka, Y., & Nozaki, Y. (2021). Interleukin-18 in Inflammatory Kidney Disease. Frontiers in Medicine, 8, 639103. https://doi.org/10.3389/fmed.2021.639103
    13. Jang, D.-I., Lee, A.-H., Shin, H.-Y., Song, H.-R., Park, J.-H., Kang, T.-B., Lee, S.-R., & Yang, S.-H. (2021). The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International Journal of Molecular Sciences, 22(5), 2719. https://doi.org/10.3390/ijms22052719
    14. Li, J., Chen, J., Lan, H.-Y., & Tang, Y. (2023). Role of C-Reactive Protein in Kidney Diseases. Kidney Diseases (Basel, Switzerland), 9(2), 73–81. https://doi.org/10.1159/000528693
    15. Nandi. A., Yan L. J., Jana C. K., Das, N. (2019). Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev. 2019:9613090. 10.1155/2019/9613090
    16. Makris, K., & Spanou, L. (2016a). Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. The Clinical Biochemist. Reviews, 37(2), 85–98.
    17. Makris, K., & Spanou, L. (2016b). Acute Kidney Injury: Diagnostic Approaches and Controversies. The Clinical Biochemist. Reviews, 37(4), 153–175.
    18. Manoeuvrier, G., Bach-Ngohou, K., Batard, E., Masson, D., & Trewick, D. (2017). Diagnostic performance of serum blood urea nitrogen to creatinine ratio for distinguishing prerenal from intrinsic acute kidney injury in the emergency department. BMC Nephrology, 18(1), 173. https://doi.org/10.1186/s12882-017-0591-9
    19. Makris, K., Spanou, L. (2016). Acute kidney injury: diagnostic approaches and controversies. Clin Biochem Rev., 37,153-75.
    20. Matsui, K., Kamijo-Ikemorif, A., Sugaya, T., Yasuda, T., & Kimura, K. (2011). Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity. The American Journal of Pathology, 178(3), 1021–1032. https://doi.org/10.1016/j.ajpath.2010.12.002
    21. Murty, M. S. N., Sharma, U. K., Pandey, V. B., & Kankare, S. B. (2013). Serum cystatin C as a marker of renal function in detection of early acute kidney injury. Indian Journal of Nephrology, 23(3), 180–183. https://doi.org/10.4103/0971-4065.111840
    22. Nandi, A., Yan, L.-J., Jana, C. K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 9613090. https://doi.org/10.1155/2019/9613090
    23. Rosa, A. C., Corsi, D., Cavi, N., Bruni, N., & Dosio, F. (2021). Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules (Basel, Switzerland), 26(7), 1844. https://doi.org/10.3390/molecules26071844
    24. Shah, S. H., & Mehta, R. L. (2006). Acute kidney injury in critical care: Time for a paradigm shift? Current Opinion in Nephrology and Hypertension, 15(6), 561–565. https://doi.org/10.1097/01.mnh.0000247498.56668.09
    25. Simsek, A., Tugcu, V., & Tasci, A. I. (2013). New biomarkers for the quick detection of acute kidney injury. ISRN Nephrology, 2013, 394582. https://doi.org/10.5402/2013/394582
    26. Srisawat, N., & Kellum, J. A. (2020). The Role of Biomarkers in Acute Kidney Injury. Critical Care Clinics, 36(1), 125–140. https://doi.org/10.1016/j.ccc.2019.08.010
    27. Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology, 6(10), a016295. https://doi.org/10.1101/cshperspect.a016295
    28. Teo, S. H., & Endre, Z. H. (2017). Biomarkers in acute kidney injury (AKI). Best Practice & Research. Clinical Anaesthesiology, 31(3), 331–344. https://doi.org/10.1016/j.bpa.2017.10.003
    29. Vaidya, V. S., Ferguson, M. A., & Bonventre, J. V. (2008). Biomarkers of acute kidney injury. Annual Review of Pharmacology and Toxicology, 48, 463–493. https://doi.org/10.1146/annurev.pharmtox.48.113006.094615
    30. Xiao, Z., Huang, Q., Yang, Y., Liu, M., Chen, Q., Huang, J., Xiang, Y., Long, X., Zhao, T., Wang, X., Zhu, X., Tu, S., & Ai, K. (2022). Emerging early diagnostic methods for acute kidney injury. Theranostics, 12(6), 2963–2986. https://doi.org/10.7150/thno.71064
    31. Yoo, J.-J., Kwon, J. H., Kim, Y. S., Nam, S. W., Park, J. W., Kim, H. Y., Kim, C. W., Shin, S. K., Chon, Y. E., Jang, E. S., Jeong, S.-H., Lee, J. W., Song, D. S., Yang, J. M., Lee, S. W., Lee, H. L., Jung, Y. K., Yim, H. J., Lee, B., … Kim, J. H. (2021). The Role of Urinary N-Acetyl-β-d-glucosaminidase in Cirrhotic Patients with Acute Kidney Injury: Multicenter, Prospective Cohort Study. Journal of Clinical Medicine, 10(19), 4328. https://doi.org/10.3390/jcm10194328
    32. Yuan, Q., Zhang, H., Deng, T., Tang, S., Yuan, X., Tang, W., Xie, Y., Ge, H., Wang, X., Zhou, Q., & Xiao, X. (2020). Role of Artificial Intelligence in Kidney Disease. International Journal of Medical Sciences, 17(7), 970–984. https://doi.org/10.7150/ijms.42078

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Malque Publishing

How to cite

Umate, S., Choudhary, M., Sayyad, A., Sharma, R., Wankhede, P., Pohekar, S., Dod, K., Tamgire, B., Umate, R., & Wanjari, M. (2024). Navigating the landscape: a comprehensive review of biomarkers in acute kidney injury. Multidisciplinary Reviews, 7(7), 2024125. https://doi.org/10.31893/multirev.2024125
  • Article viewed - 93
  • PDF downloaded - 27