• Abstract

    Soft tissue wound care, particularly in the context of facial traumatic injuries, has undergone significant progress propelled by interdisciplinary collaborations between medical professionals and engineers. This comprehensive review explores the evolution of traditional and advanced techniques for managing soft tissue wounds, emphasizing innovations in scar prevention and the integration of cutting-edge technologies. This review covers the immediate assessment and management of facial traumatic injuries, traditional wound care approaches, and the latest advancements in soft tissue wound healing. Notably, collaborative efforts in biomechanical engineering have led to the development of bioengineered scaffolds, innovative dressings, and customizable implants that promise to revolutionize wound closure and tissue regeneration. The integration of robotics into soft tissue wound care procedures has shown promise in improving precision, reducing invasiveness, and enhancing surgical interventions. Additionally, regenerative technologies, including tissue engineering, 3D bioprinting, and regenerative medicine approaches, offer novel strategies for harnessing the body's natural healing processes. Looking ahead, the future of soft tissue wound care holds exciting prospects, including advancements in technology and imaging for more precise diagnostics, personalized medicine approaches tailored to individual patient profiles, and continued collaboration between medicine and engineering to develop innovative solutions. These future directions are poised to redefine the landscape of soft tissue wound care, offering improved outcomes and quality of life for individuals with facial traumatic injuries and other complex wounds.

  • References

    1. Cho, D. Y., Willborg,B. E., & Lu, G. N. (2021). Management of traumatic soft tissue injuries of the face. Seminars in Plastic Surgery, 35(4), 229–237. https://doi.org/10.1055/s-0041-1735814
    2. Bhattacharya, V. (2012). Management of soft tissue wounds of the face. Indian Journal of Plastic Surgery, 45(3), 436. https://doi.org/10.4103/0970-0358.1059363
    3. Sahni, V. (2018). Psychological impact of facial trauma. Craniomaxillofacial Trauma & Reconstruction, 11(1), 15-20. https://doi.org/10.1055/s-0037-1603464
    4. Mollica, P. G., McEwen E. C., & Hoffman, G. R. (2022). Falls from height, facial injuries and fatalities: An institutional review. Craniomaxillofacial Trauma & Reconstruction, 15(4), 325-331. https://doi.org/10.1177/19433875211055356
    5. Tokas, A., Sood, S., Bhatia, H. P., Sharma, N., & Singh, A. (2022). Sports-related orofacial injuries in children: Awareness and experience among sports coaches in Delhi region of India. International Journal of Clinical Pediatric Dentistry, 15(4), 450-454. https://doi.org/10.5005/jp-journals-10005-2381
    6. Cormier, J., & Duma, S. (2009). The epidemiology of facial fractures in automotive collisions. Annals of Advances in Automotive Medicine, 53, 169-176.
    7. Goulart, D. R., Colombo, L. A., De Moraes, M., & Asprino, L. (2014). What is expected from a facial trauma caused by violence? Journal of Oral and Maxillofacial Research, 5(4), e4. https://doi.org/10.5037/jomr.2014.5404
    8. Varacallo, M., & Knoblauch, D. K. (2023). Occupational injuries and workers’ compensation management strategies. StatPearls, StatPearls Publishing.
    9. Datarkar, A., & Tayal, S. (2021). Management of soft tissue injuries in the maxillofacial region. In K. Bonanthaya, E. Panneerselvam, S. Manuel, V. V. Kumar, & A. Rai (Eds.), Oral and Maxillofacial Surgery for the Clinician (pp. 997-1012). Springer Nature: Singapore. https://doi.org/10.1007/978-981-15-1346-6_49
    10. Planas, J. H., Waseem, M., & Sigmon, D. F. (2023). Trauma primary survey. StatPearls. StatPearls Publishing.
    11. Zemaitis, M. R., Planas, J. H., & Waseem, M. (2023). Trauma secondary survey. StatPearls. StatPearls Publishing.
    12. Willett, J. K. (2019). Imaging in trauma in limited-resource settings: A literature review. African Journal of Emergency Medicine, 9(suppl), S21-S27. https://doi.org/10.1016/j.afjem.2018.07.007
    13. Clark A., Das, J., Weisbrod, L. J., & Mesfin, F. B. (2023). Trauma neurological exam. StatPearls. StatPearls Publishing.
    14. Peng, H. T. (2020). Hemostatic agents for prehospital hemorrhage control: A narrative review. Military Medicine Research, 7(1), 13. https://doi.org/10.1186/s40779-020-00241-z
    15. Ahmadi, A., Bazargan-Hejazi, S., Heidari Zadie, Z., et al. (2016). Pain management in trauma: A review study. Journal of Injury and Violence Research, 8(2), 89-98. https://doi.org/10.5249/jivr.v8i2.707
    16. Manna, B., Nahirniak, P., Morrison, C. A. (2023). Wound debridement. In StatPearls. StatPearls Publishing.
    17. DeYulis, M., & Hinson, J. W. (2023). Joint immobilization. In StatPearls. StatPearls Publishing.
    18. Avva, U., Lata, J. M., Kiel, J. (2023). Airway management. In StatPearls. StatPearls Publishing.
    19. Behrens, A. M., Sikorski, M. J., Kofinas, P. (2014). Hemostatic strategies for traumatic and surgical bleeding. Journal of Biomedical Materials Research Part A, 102(11), 4182–4194. https://doi.org/10.1002/jbm.a.35052
    20. Theivendran, K., Thakrar, R. R., Deshmukh, S. C., Dwan, K. (2019). Closed reduction methods for acute anterior shoulder dislocation. Cochrane Database of Systematic Reviews, 2019(4), CD011051. https://doi.org/10.1002/14651858.CD011051.pub2
    21. Althoff, A. D., & Reeves, R. A. (2023). Splinting. In StatPearls. StatPearls Publishing.
    22. Atiyeh, B. S., Dibo, S. A., Hayek, S. N. (2009). Wound cleansing, topical antiseptics, and wound healing. International Wound Journal, 6(6), 420-430. https://doi.org/10.1111/j.1742-481X.2009.00639.x
    23. Nowak, M., Mehrholz, D., Barańska-Rybak, W., Nowicki R. J. (2022). Wound debridement products and techniques: Clinical examples and literature review. Postępy Dermatologii i Alergologii, 39(3), 479-490. https://doi.org/10.5114/ada.2022.117572
    24. Cambiaso-Daniel, J., Boukovalas, S., Bitz, G. H., Branski, L. K., Herndon, D. N., & Culnan, D. M. (2018). Topical antimicrobials in burn care: Part I – Topical antiseptics. *Annals of Plastic Surgery*. https://doi.org/10.1097/SAP.0000000000001297
    25. Al-Mubarak L., Al-Haddab M. (2013). Cutaneous wound closure materials: An overview. Journal of Cutaneous and Aesthetic Surgery, 6(4), 178–188. https://doi.org/10.4103/0974-2077.123395
    26. Azmat, C. E., & Council M. (2023). Wound closure techniques. In StatPearls. StatPearls Publishing.
    27. Goto ,S., Sakamoto, T., Ganeko, R., Hida ,K., Furukawa, T. A., & Sakai Y. (2020). Subcuticular sutures for skin closure in non‐obstetric surgery. Cochrane Database of Systematic Reviews, 2020(4), CD012124. https://doi.org/10.1002/14651858.CD012124.pub2
    28. Britto, E. J., Nezwek ,T. A., Popowicz P., & Robins M. (2023). Wound dressings. In StatPearls. StatPearls Publishing.
    29. Sood ,A., Granick, M. S., & Tomaselli,N. L. (2014). Wound dressings and comparative effectiveness data. Advances in Wound Care (New Rochelle), 3(8), 511-529. https://doi.org/10.1089/wound.2012.0401
    30. Pakyari, M., Farrokhi, A., Maharlooei, M. K., & Ghahary, A. (2013). Critical role of transforming growth factor beta in different phases of wound healing. Advances in Wound Care (New Rochelle),2(5), 215–224. https://doi.org/10.1089/wound.2012.0406
    31. Saghazadeh, S., Rinoldi, C., Schot, M., et al. (2018). Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, pp. 127, 138–166. https://doi.org/10.1016/j.addr.2018.04.008
    32. Chhabra S., Chhabra N., Kaur A., & Gupta N. (2017). Wound healing concepts in clinical practice of OMFS. Journal of Maxillofacial and Oral Surgery, 16(4), 403-423. https://doi.org/10.1007/s12663-016-0880-z
    33. Dzobo K., Thomford N. E., Senthebane D. A., et al. (2018). Advances in regenerative medicine and tissue engineering: Innovation and transformation of medicine. Stem Cells International, 2018, 2495848. https://doi.org/10.1155/2018/2495848
    34. Aly, R. M. (2020). The current state of stem cell-based therapies: An overview. Stem Cell Investigation, pp. 7, 8. https://doi.org/10.21037/sci-2020-001
    35. Bitar, K. N., & Zakhem E. (2014). Design strategies of biodegradable scaffolds for tissue regeneration. Biomedical Engineering and Computational Biology, 6, 13-20. https://doi.org/10.4137/BECB.S10961
    36. Wang, S., Wu W.-Y., Yeo J. C. C., et al. (2023). Responsive hydrogel dressings for intelligent wound management. BMEMat, 1(2), e12021. https://doi.org/10.1002/bmm2.12021
    37. Kushwaha, A., Goswami, L., & Kim, B. S. (2022). Nanomaterial-based therapy for wound healing. Nanomaterials (Basel), 12(4), 618. https://doi.org/10.3390/nano12040618
    38. Nyberg, E. L., Farris A. L., Hung B. P., et al. (2017). 3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration. Annals of Biomedical Engineering, 45(1), 45-57. https://doi.org/10.1007/s10439-016-1668-5
    39. Bleasdale, B., Finnegan S., M. K., Kelly S., & Percival S. L. (2015). The use of silicone adhesives for scar reduction. Advances in Wound Care (New Rochelle), 4(7), 422–430. https://doi.org/10.1089/wound.2015.0625
    40. Draelos, Z. D., Baumann L., Fleischer A. B., Plaum S., Avakian E. V., & Hardas B. (2012). A new proprietary onion extract gel improves the appearance of new scars: A randomized, controlled, blinded-investigator study. Journal of Clinical and Aesthetic Dermatology, 5(6), 18-24.
    41. Lin Y., Chen Z., Liu Y., Wang J., Lv W., & Peng R. (2022). Recent advances in nano-formulations for skin wound repair applications. Drug Design, Development, and Therapy, 16, 2707-2728. https://doi.org/10.2147/DDDT.S375541
    42. Fu X., Dong J., Wang S., Yan M., & Yao M. (2019). Advances in treating traumatic scars with laser, intense pulsed light, radiofrequency, and ultrasound. Burns & Trauma, 7, 1. https://doi.org/10.1186/s41038-018-0141-0
    43. Klifto K. M., Asif M., & Hultman C. S. (2020). Laser management of hypertrophic burn scars: A comprehensive review. Burns & Trauma, p. 8, tkz002. https://doi.org/10.1093/burnst/tkz002
    44. Atiyeh B. S., El Khatib A. M. E., & Dibo S. A. (2013). Pressure garment therapy (PGT) of burn scars: Evidence-based efficacy. Annals of Burns and Fire Disasters, 26 (4), 205-212.
    45. Ripper S., Renneberg B., Landmann C., Weigel G., & Germann G. (2009). Adherence to pressure garment therapy in adult burn patients. Burns, 35 (5), 657-664. https://doi.org/10.1016/j.burns.2009.01.011
    46. Harris, I. M., Lee, K. C., Deeks, J. J., Moore, D. J., Moiemen, N. S., & Dretzke, J. (2020). Pressure‐garment therapy for preventing hypertrophic scarring after burn injury. Cochrane Database of Systematic Reviews, 2020 (2020), CD013530. https://doi.org/10.1002/
    47. Sarwer, D. B., Siminoff, L. A., Gardiner, H. M., & Spitzer, J. C. (2022). The psychosocial burden of visible disfigurement following traumatic injury. Frontiers in Psychology, 13, 979574. https://doi.org/10.3389/fpsyg.2022.979574
    48. Snyder, D. J., & Bartoshuk, L. M. (2016). Oral sensory nerve damage: Causes and consequences. Reviews in Endocrine and Metabolic Disorders, 17 (2), 149–158. https://doi.org/10.1007/s11154-016-9377-9
    49. Center for Substance Abuse Treatment (US). (2014). Trauma-Informed Care in Behavioral Health Services. Rockville, MD: Substance Abuse and Mental Health Services Administration (U.S.). Treatment Improvement Protocol (TIP) (57) https://www.ncbi.nlm.nih.gov/books/NBK207201/
    50. Kalariya, Y., Kumar, A., Ullah, A., et al. (2023). Integrative medicine approaches: Bridging the gap between conventional and renal complementary therapies. Cureus, 15 (9), e46033. https://doi.org/10.7759/cureus.46033
    51. Calhoun, C. D., Stone, K. J., Cobb, A. R., Patterson, M. W., Danielson, C. K., & Bendezú, J. J. (2022). The role of social support in coping with psychological trauma: An integrated biopsychosocial model for posttraumatic stress recovery. Psychiatric Quarterly, 93 (4), 949–970. https://doi.org/10.1007/s11126-022-10003-w
    52. Moudatsou, M., Stavropoulou, A., Philalithis, A., & Koukouli, S. (2020). The role of empathy in health and social care professionals. Healthcare, 8 (1), 26. https://doi.org/10.3390/healthcare8010026
    53. Kretlow, J., McKnight, A., & Izaddoost, S. (2010). Facial soft tissue trauma. Seminars in Plastic Surgery, 24 (04), 348-356. https://doi.org/10.1055/s-0030-1269764
    54. Braun, T., & Maricevich, R. (2017). Soft tissue management in facial trauma. Seminars in Plastic Surgery, 31 (02), 073-079. https://doi.org/10.1055/s-0037-1601381
    55. Gabriel, A., & Kim, P. J. (2021). Introduction to “Soft-tissue wound management: Current applications of negative-pressure wound therapy with instillation.” Plastic & Reconstructive Surgery, 147(1S-1), 5S-7S. https://doi.org/10.1097/PRS.0000000000007606
    56. Mirhaj, M., Labbaf, S., Tavakoli, M., & Seifalian, A. M. (2022). Emerging treatment strategies in wound care. International Wound Journal, 19 (7), 1934-1954. https://doi.org/10.1111/iwj.13786
    57. Werdin, F., Tennenhaus, M., Schaller, H.-E., & Rennekampff, H.-O. (2009). Evidence-based management strategies for treatment of chronic wounds. Eplasty, 9, e19.
    58. Li, S., Mohamedi, A. H., Senkowsky, J., Nair, A., & Tang, L. (2020). Imaging in chronic wound diagnostics. Advances in Wound Care, 9(5), 245-263. https://doi.org/10.1089/wound.2019.0967
    59. Yogev, D., Goldberg, T., Arami, A., Tejman-Yarden, S., Winkler, T. E., & Maoz, B. M. (2023). Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioengineering, 7(3), 031506. https://doi.org/10.1063/5.0152290
    60. Chanussot-Deprez, C., & Contreras-Ruiz, J. (2013). Telemedicine in wound care: A review. Advances in Skin & Wound Care, 26(2), 78-82. https://doi.org/10.1097/01.ASW.0000426717.59326.5f
    61. Hu, Y., Hines, L. M., Weng, H., et al. (2003). Analysis of genomic and proteomic data using advanced literature mining. Journal of Proteome Research, 2(4), 405–412. https://doi.org/10.1021/pr0340227
    62. Lindley, L. E., Stojadinovic, O., Pastar, I., & Tomic-Canic, M. (2016). Biology and biomarkers for wound healing. Plastic & Reconstructive Surgery, 138(3S), 18S-28S. https://doi.org/10.1097/PRS.0000000000002682
    63. Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare (pp. 25-60). Elsevier. https://doi.org/10.1016/B978-0-12-818438-7.00002-2
    64. Ramezani, M., & Mohd Ripin, Z. (2023). 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions. Journal of Functional Biomaterials, 14(7), 347. https://doi.org/10.3390/jfb14070347
    65. Zhu, J., Lyu, L., Xu, Y., et al. (2021). Intelligent soft surgical robots for next‐generation minimally invasive surgery. Advanced Intelligent Systems, 3(5), 2100011. https://doi.org/10.1002/aisy.202100011

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Malque Publishing

How to cite

Pedaprolu, A. S., & Rewale, V. M. (2024). Advances in soft tissue wound care: A comprehensive review of facial traumatic injuries. Multidisciplinary Reviews, 7(7), 2024131. https://doi.org/10.31893/multirev.2024131
  • Article viewed - 435
  • PDF downloaded - 227