• Abstract

    This study aims to analyze the factors that influence the intention to use digital providers. Performance expectancy is the extent to which users believe that using technology will increase productivity and effectiveness in achieving their goals. Effort expectancy refers to how easy users believe the technology will be to use. If the technology is perceived as easy to use, then users are more likely to adopt it. Social influence refers to the influence generated by others on the decision to use technology. This factor can include social support or recommendations from others, influence from groups, or social norms related to technology use. In this study, a random sampling technique was used as the sampling method. A total of 214 data points were collected through a self-administered survey from respondents of two luxury handbag brands in Indonesia. The analysis method in this research used structural equation modeling (SEM). There are significant relationships between ideal self-congruence and customer love for a brand, between ideal self-congruence and customer loyalty to a brand, and between customer love and customer loyalty to a brand. On the theoretical level, this research contributes to a better understanding of how to create customer loyalty to brands through tracking the self-congruence construct and customer love for brands. On the managerial level, this research provides useful actionable guidance to loyalty program managers on how to create luxury brands that incorporate customer ideal self-congruence and simultaneously foster strong emotional bonding to brands. Contemporary interest in customer loyalty to brands has resulted in a variety of related research being conducted in many areas. Our investigation reveals that few studies address the relationship between ideal self-congruence, brand love, and customer loyalty to luxury brands.

  • References

    1. Abdi, H, (2020). Manfaat Teknologi Informasi di Berbagai Bidang Kehidupan. Retrieved December, 20th, 2022.
    2. Ahmad, W., Kim, W. G., Choi, H. M., & Haq, J. U. (2021). Modeling behavioral intention to use travel reservation apps: a cross-cultural examination between US and China. Journal of Retailing and Consumer Services, 63, 102689.
    3. Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Algharabat, R. (2018). Examining factors influencing Jordanian customers’ intentions and adoption of internet banking: Extending UTAUT2 with risk. Journal of Retailing and Consumer Services, 40, 125- 138.
    4. Alam, M. Z., Hu, W., Kaium, M. A., Hoque, M. R., & Alam, M. M. D. (2020). Understanding the determinants of mHealth apps adoption in Bangladesh: A SEM-Neural network approach. Technology in Society, 61, 101255.
    5. Al-Saedi, K., Al-Emran, M., Ramayah, T., & Abusham, E. (2020). Developing a general extended UTAUT model for M-payment adoption. Technology in Society, 62, 101293.
    6. Andrews, J. E., Ward, H., & Yoon, J. (2021). UTAUT as a model for understanding intention to adopt AI and related technologies among librarians. The Journal of Academic Librarianship, 47(6), 102437.
    7. Anouze, A. L. M., & Alamro, A. S. (2019). Factors affecting intention to use e-banking in Jordan. International Journal of Bank Marketing.
    8. Arfi, W. B., Nasr, I. B., Kondrateva, G., & Hikkerova, L. (2021). The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Technological Forecasting and Social Change, 167, 120688.
    9. Athiyaman, A. (2002). Internet users’ intention to purchase air travel online: an empirical investigation. Marketing intelligence & planning.
    10. Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of social and clinical psychology, 4(3), 359. By.U. (2022). Pilih Kuota Internet. Retrieved December, 14th, 2022. URL
    11. Camadan, F., Reisoglu, I., vas, Ö. F., & Mcilroy, D. (2018). How teachers’ personality affect on their behavioral intention to use tablet PC. The International Journal of Information and Learning Technology.
    12. Cimperman, M., Brenčič, M. M., & Trkman, P. (2016). Analyzing older users’ home telehealth services acceptance behavior—applying an Extended UTAUT model. International journal of medical informatics, 90, 22-31.
    13. Clinten, B. (2021). Ini Alasan Pelanggan di Indonesia Ganti Operator Seluler. Retrieved September, 29th, 2022.
    14. Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 189-211.
    15. Cooper, J., Kelly, K. A., & Weaver, K. (2001). Attitudes, norms, and social groups. Blackwell handbook of social psychology: Group processes, 259-282.
    16. Davis, F. (1989), “Perceived usefulness, perceived ease of use, and user acceptance of information technology”, MIS Quarterly, Vol. 13 No. 3, pp. 319–340.
    17. Dhiman, N., Arora, N., Dogra, N., & Gupta, A. (2019). Consumer adoption of smartphone fitness apps: an extended UTAUT2 perspective. Journal of Indian Business Research.
    18. Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric, 10(2).
    19. Gerrard, P., & Cunningham, J. B. (2003). The diffusion of internet banking among Singapore consumers. International journal of bank marketing.
    20. Gupta, A., Dogra, N., & George, B. (2018). What determines tourist adoption of smartphone apps? An analysis based on the UTAUT-2 framework. Journal of Hospitality and Tourism Technology.
    21. Hendrowijono, M. S. (2022). Jaringan Seluler Dituntut Berkecepatan Tinggi. Retrieved November, 18th, 2022.
    22. Jiang, Y., Wang, X., & Yuen, K. F. (2021). Augmented reality shopping application usage: The influence of attitude, value, and characteristics of innovation. Journal of Retailing and Consumer Services, 63, 102720.
    23. Kapser, S., & Abdelrahman, M. (2020). Acceptance of autonomous delivery vehicles for lastmile delivery in Germany–Extending UTAUT2 with risk perceptions. Transportation Research Part C: Emerging Technologies, 111, 210-225.
    24. Kapser, S., & Abdelrahman, M. (2020). Acceptance of autonomous delivery vehicles for lastmile delivery in Germany–Extending UTAUT2 with risk perceptions. Transportation Research Part C: Emerging Technologies, 111, 210-225.
    25. Laucereno, S. F. (2022). Kebutuhan Internet Makin Vital, Provider Adu Jurus Gaet Milenial. Retrieved September, 29th, 2022.
    26. Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in human behavior, 21(6), 873-891.
    27. Madan, K., & Yadav, R. (2016). Behavioral intention to adopt mobile wallet: a developing country perspective. Journal of Indian Business Research.
    28. Mandrik, C. A., & Bao, Y. (2005). Exploring the concept and measurement of general risk aversion. ACR North American Advances.
    29. Merhi, M., Hone, K., & Tarhini, A. (2019). A cross-cultural study of the intention to use mobile banking between Lebanese and British consumers: Extending UTAUT2 with security, privacy and trust. Technology in Society, 59, 101151.
    30. Novianty, D. (2021). Percepatan Transformasi Digital Nasional lewat Konsoldasi Operator. Retrieved November, 18th, 2022.URL P. Pavlou, Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model, Int. J. Electron. Commer. 7 (3) (2003) 69–103.
    31. Pham, T. T. T., & Ho, J. C. (2014, July). What are the core drivers in consumer adoption of NFC-based mobile payments?: A proposed research framework. In Proceedings of PICMET'14 Conference: Portland International Center for Management of Engineering and Technology; Infrastructure and Service Integration (pp. 3041-3049). IEEE.
    32. Prasetyani, Y. M. (2021). Internet Sudah Jadi Napas Baru Kehidupan di Tengah Pandemi. Retrieved September, 28 th, 2022.
    33. Pratama, A. M. (2020). Pengguna Internet Indonesia hingga Kuartal II 2020 Capai 196,7 Juta Orang. Retrieved September, 28 th, 2022.
    34. Pratama, K. R. (2020). MPWR, Operator Seluler Digital dari Indosat Resmi Meluncur. Retrieved November, 18th, 2022.URL
    35. Pratomo, Y. (2019). Telkomsel Rilis Kartu Prabayar Digital By.U, Bisa Pilih Sendiri Kuota Aplikasi. Retrieved November, 28 th, 2022. URL
    36. Qothrunnada, K. (2022). 10 Perusahaan Teknologi Terbesar di Dunia Tahun 2022. Retrieved September, 28 th, 2022.
    37. Riyanto, G. P. (2021). Jumlah Pengguna Internet Indonesia 2021 Tembus 202 Juta. Retrieved September, 28 th, 2022. URL
    38. Riyanto, G. P. (2022). Pengguna Internet di Indonesia Tembus 210 juta pada 2022. Retrieved November, 18th, 2022. URL
    39. Rizal, J. G. (2021). Mengenal Apa Itu Generasi Baby Boomers, X, Y, Z, Millenials, dan Alpha. Retrieved September, 28 th, 2022. URL
    40. Sathye, M. (1999). Adoption of Internet banking by Australian consumers: an empirical investigation. International Journal of bank marketing. Saturwa, H. N. Digitalisasi UMKM dan Pemulihan Ekonomi Nasional. Retrieved November, 18th, 2022. URL
    41. Saxena, S. (2018). Role of “perceived risks” in behavior mobile government (m-government) services in India. foresight.
    42. Singh, N., Sinha, N., & Liébana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50, 191-205.
    43. Soenarso, S. A. (2020). XL Axiata Luncurkan Brand Live.On, Apa Itu?. Retrieved November, 18th, 2022. URL
    44. Stephanie, C. (2021). Riset Ungkap Lebih dari Separuh Penduduk Indonesia "Melek" Media Sosial. Retrieved December, 20th , 2022. URL Stephanie, C. (2020). Membandingkan Harga Paket Internet By.U, Switch, dan Live On. Retrieved December, 14th, 2022.
    45. Thusi, P., & Maduku, D. K. (2020). South African millennials’ acceptance and use of retail mobile banking apps: An integrated perspective. Computers in Human Behavior, 111, 106405.
    46. Van Slyke, C., Ilie, V., Lou, H., & Stafford, T. (2007). Perceived critical mass and the adoption of a communication technology. European Journal of Information Systems, 16(3), 270-283.
    47. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003), “User acceptance of information technology: toward a unified view”, MIS Quarterly, pp. 425-478.
    48. Wang, Y. S., Lin, H. H., and Luarn P. “Predicting consumer intention to use mobile service,” Information SystemsJournal, 16(2), 2006, pp. 157-179
    49. Wei, T.T., Marthandan, G., Chong, A.Y.L., Ooi, K.B. and Arumugam, S. (2009) ‘What drives Malaysian m-commerce adoption? An empirical analysis’, Industrial Management & Data Systems,109(3), 370–388.
    50. Wreta, A. (2022). Tahapan Transformasi Digital: Apa itu, Contoh, dan Kerangkanya. Retrieved September, 29th, 2022.
    51. Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & management, 42(5), 719- 729.
    52. Zhang, X., Liu, S., Wang, L., Zhang, Y., & Wang, J. (2019). Mobile health service adoption in China: integration of theory of planned behavior, protection motivation theory and personal health differences. Online Information Review.
    53. Zhang, Y., & Jin, S. (2016). The impact of social support on postpartum depression: The mediator role of self-efficacy. Journal of health psychology, 21(5), 720-726.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Malque Publishing

How to cite

Rizkalla, N., Tannady, H., & Bernando, R. (2024). Analysis of the influence of performance expectancy, effort expectancy, social influence, and attitude toward behavior on intention to adopt live.on. Multidisciplinary Reviews, 6, 2023spe017. https://doi.org/10.31893/multirev.2023spe017
  • Article viewed - 509
  • PDF downloaded - 187