• Abstract

    Unmanned Aerial Vehicles (UAVs) have revolutionized data acquisition across various domains, presenting immense potential for image processing and semantic segmentation. This literature review encompasses a thorough exploration of advancements, techniques, challenges, and datasets pertaining to UAV image semantic segmentation. It begins by introducing the fundamental concepts of UAVs, highlighting their pivotal role in capturing high-resolution imagery that serves diverse applications. The integration of deep learning algorithms with UAVs is emphasized, unlocking new horizons in autonomous flight, security, and environmental monitoring. Delving into the core principles of semantic segmentation, the review elucidates the critical task of classifying every pixel in an image. Convolutional Neural Networks (CNNs) are presented as the cornerstone technology, tracing their evolution from traditional CNNs to the highly adaptable Fully Convolutional Networks (FCNs). A substantial portion of the review is dedicated to FCNs, underscoring their ability to process images of varying dimensions while maintaining spatial coherence in the output. Their pivotal role in semantic segmentation, encompassing both classification and localization, is articulated. The subsequent sections delve into a comprehensive survey of state-of-the-art models, including SegNet, PSPNet, DeepLabNet, EfficientNet, DenseNet-C, and LinkNet. Each model's unique strengths and applications contribute to the evolving landscape of semantic segmentation tasks. The versatility of the U-Net architecture takes center stage in the latter parts of the review. Its fundamental structure is elucidated, followed by a comprehensive examination of its manifold adaptations—3D-U-Net, ResU-Net, U-Net++, Adversarial U-Net, Cascaded U-Net, and Improved U-Net 3+. These modifications address intrinsic challenges such as limited receptive fields and class imbalances, propelling U-Net to the forefront of image segmentation techniques. The subsequent sections pivot toward the application of U-Net in UAV image segmentation, illustrating its efficacy in diverse tasks, including land cover and crop classification. Nevertheless, persisting challenges, such as the scarcity of annotated datasets and the need for model generalization across varied environmental conditions, remain key areas of concern. The review culminates by underlining the significance of large, authentic datasets and data augmentation techniques. Furthermore, a brief exploration of publicly available UAV image datasets is presented, enhancing our understanding of the resources accessible for training and evaluating models. This comprehensive literature review encapsulates the dynamism of UAV image processing and semantic segmentation, illuminating recent developments and avenues for future research in this burgeoning field.

     
  • References

    1. AbdelMaksoud, E., Barakat, S., & Elmogy, M. (2020). Diabetic retinopathy grading based on a hybrid deep learning model. In 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI) (pp. 1-6). IEEE.
    2. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938.
    3. Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110.
    4. Adayel, R., Bazi, Y., Alhichri, H., & Alajlan, N. (2020). Deep open-set domain adaptation for cross-scene classification based on adversarial learning and pareto ranking. Remote sensing, 12(11), 1716.
    5. Al-Najjar, H. A., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., & Mansor, S. (2019). Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sensing, 11(12), 1461.
    6. Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & Asari, V. K. (2018). The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164.
    7. Ammour, N., Alhichri, H., Bazi, Y., Benjdira, B., Alajlan, N., & Zuair, M. (2017). Deep learning approach for car detection in UAV imagery. Remote Sensing, 9(4), 312.
    8. Ampatzidis, Y., & Partel, V. (2019). UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence. Remote Sensing, 11(4), 410.
    9. Apolo-Apolo, O. E., Martínez-Guanter, J., Egea, G., Raja, P., & Pérez-Ruiz, M. (2020). Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. European Journal of Agronomy, 115, 126030.
    10. Audebert, N., Le Saux, B., & Lefèvre, S. (2019). Deep learning for classification of hyperspectral data: A comparative review. IEEE geoscience and remote sensing magazine, 7(2), 159-173.
    11. Bachman, P., Hjelm, R. D., & Buchwalter, W. (2019). Learning representations by maximizing mutual information across views. arXiv preprint arXiv:1906.00910.
    12. Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495.
    13. Bah, M. D., Hafiane, A., & Canals, R. (2018). Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote sensing, 10(11), 1690.
    14. Baldi, P., & Vershynin, R. (2019). The capacity of feedforward neural networks. Neural networks, 116, 288-311.
    15. Ball, J. E., Anderson, D. T., & Chan Sr, C. S. (2017). Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. Journal of Applied Remote Sensing, 11(4), 042609.
    16. Banerjee, K., Gupta, R. R., Vyas, K., & Mishra, B. (2020). Exploring Alternatives to Softmax Function. arXiv preprint arXiv:2011.11538.
    17. Barbedo, J. G. A., Koenigkan, L. V., Santos, P. M., & Ribeiro, A. R. B. (2020). Counting cattle in uav images—dealing with clustered animals and animal/background contrast changes. Sensors, 20(7), 2126.
    18. Barbedo, J. G. A., Koenigkan, L. V., Santos, T. T., & Santos, P. M. (2019). A study on the detection of cattle in UAV images using deep learning. Sensors, 19(24), 5436.
    19. Bell, T. W., Nidzieko, N. J., Siegel, D. A., Miller, R. J., Cavanaugh, K. C., Nelson, N. B., ... & Griffith, M. (2020). The utility of satellites and autonomous remote sensing platforms for monitoring offshore aquaculture farms: A case study for canopy forming kelps. Frontiers in Marine Science, 7, 1083.
    20. Benardos, P. G., & Vosniakos, G. C. (2007). Optimizing feedforward artificial neural network architecture. Engineering applications of artificial intelligence, 20(3), 365-382.
    21. Bendale, A., & Boult, T. E. (2016). Towards open set deep networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1563-1572).
    22. Benjdira, B., Bazi, Y., Koubaa, A., & Ouni, K. (2019). Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images. Remote Sensing, 11(11), 1369.
    23. Bhatia, Y., Rai, R., Gupta, V., Aggarwal, N., & Akula, A. (2019). Convolutional neural networks based potholes detection using thermal imaging. Journal of King Saud University-Computer and Information Sciences.
    24. Bhowmick, S., Nagarajaiah, S., & Veeraraghavan, A. (2020). Vision and deep learning-based algorithms to detect and quantify cracks on concrete surfaces from uav videos. Sensors, 20(21), 6299.
    25. Biffi, L. J., Mitishita, E., Liesenberg, V., Santos, A. A. D., Gonçalves, D. N., Estrabis, N. V., ... & Gonçalves, W. N. (2021). ATSS deep learning-based approach to detect apple fruits. Remote Sensing, 13(1), 54.
    26. Bithas, P. S., Michailidis, E. T., Nomikos, N., Vouyioukas, D., & Kanatas, A. G. (2019). A survey on machine-learning techniques for UAV-based communications. Sensors, 19(23), 5170.
    27. Boonpook, W., Tan, Y., & Xu, B. (2021). Deep learning-based multi-feature semantic segmentation in building extraction from images of UAV photogrammetry. International Journal of Remote Sensing, 42(1), 1-19.
    28. Bui, D. T., Tsangaratos, P., Nguyen, V. T., Van Liem, N., & Trinh, P. T. (2020). Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena, 188, 104426.
    29. Buscombe, D., & Ritchie, A. C. (2018). Landscape classification with deep neural networks. Geosciences, 8(7), 244.
    30. Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6154-6162).
    31. Cai, Z., & Vasconcelos, N. (2019). Cascade r-cnn: High quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
    32. Cao, Y., Chen, K., Loy, C. C., & Lin, D. (2020). Prime sample attention in object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11583-11591).
    33. Carbonneau, P. E., Dugdale, S. J., Breckon, T. P., Dietrich, J. T., Fonstad, M. A., Miyamoto, H., & Woodget, A. S. (2020). Adopting deep learning methods for airborne RGB fluvial scene classification. Remote Sensing of Environment, 251, 112107.
    34. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020, August). End-to-end object detection with transformers. In European Conference on Computer Vision, 213-229. Springer, Cham.
    35. Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), 132-149.
    36. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., & Joulin, A. (2020). Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882.
    37. Castro, W., Marcato Junior, J., Polidoro, C., Osco, L. P., Gonçalves, W., Rodrigues, L., ... & Matsubara, E. (2020). Deep learning applied to phenotyping of biomass in forages with UAV-based RGB imagery. Sensors, 20(17), 4802.
    38. Chaurasia, A., & Culurciello, E. (2017, December). Linknet: Exploiting encoder representations for efficient semantic segmentation. In 2017 IEEE Visual Communications and Image Processing (VCIP),1-4. IEEE.
    39. Chen, J., Wu, Q., Liu, D., & Xu, T. (2020, August). Foreground-background imbalance problem in deep object detectors: A review. In 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR),285-290. IEEE.
    40. Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., ... & Lin, D. (2019). Hybrid task cascade for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4974-4983.
    41. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014). Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062.
    42. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
    43. Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.
    44. Chen, Z., Li, D., Fan, W., Guan, H., Wang, C., & Li, J. (2021). Self-attention in reconstruction bias U-Net for semantic segmentation of building rooftops in optical remote sensing images. Remote Sensing, 13(13), 2524.
    45. Cheng, G., Han, J., & Lu, X. (2017). Remote sensing image scene classification: Benchmark and state of the art. Proceedings of the IEEE, 105(10), 1865-1883.
    46. Cheng, G. & Junwei H. (2027). A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11-28.
    47. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016, October). 3D U-Net: learning dense volumetric segmentation from sparse annotation. In International conference on medical image computing and computer-assisted intervention, 424-432. Springer, Cham.
    48. Crawshaw, M. (2020). Multi-task learning with deep neural networks: A survey. arXiv preprint arXiv:2009.09796.
    49. da Silva, C. C., Nogueira, K., Oliveira, H. N., & dos Santos, J. A. (2020, March). Towards open-set semantic segmentation of aerial images. In 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), 16-21. IEEE.
    50. De Oliveira, D. C., & Wehrmeister, M. A. (2018). Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV. Sensors, 18(7), 2244.
    51. Deep learning-based multi-feature semantic segmentation in building extraction from images of UAV photogrammetr
    52. Di Franco, G., & Santurro, M. (2021). Machine learning, artificial neural networks and social research. Quality & quantity, 55(3), 1007-1025.
    53. Ding, L., Tang, H., & Bruzzone, L. (2020). Lanet: Local attention embedding to improve the semantic segmentation of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 59(1), 426-435.
    54. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
    55. Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., ... & Tian, Q. (2018). The unmanned aerial vehicle benchmark: Object detection and tracking. In Proceedings of the European Conference on Computer Vision (ECCV), 370-386.
    56. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 6569-6578.
    57. Elshamli, A., Taylor, G. W., Berg, A., & Areibi, S. (2017). Domain adaptation using representation learning for the classification of remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9), 4198-4209.
    58. Fang, B., Kou, R., Pan, L., & Chen, P. (2019). Category-sensitive domain adaptation for land cover mapping in aerial scenes. Remote Sensing, 11(22), 2631. Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., & Tian, Y. (2021).
    59. Deep residual learning in spiking neural networks. Advances in Neural Information Processing Systems, 34, 21056-21069. Feng, Q., Yang, J., Liu, Y., Ou, C., Zhu, D., Niu, B., ... & Li, B. (2020). Multi-temporal unmanned aerial vehicle remote sensing for vegetable mapping using an attention-based recurrent convolutional neural network. Remote Sensing, 12(10), 1668.
    60. Ferreira, M. P., de Almeida, D. R. A., de Almeida Papa, D., Minervino, J. B. S., Veras, H. F. P., Formighieri, A., ... & Ferreira, E. J. L. (2020). Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. Forest Ecology and Management, 475, 118397.
    61. Gao, S., Cheng, M. M., Zhao, K., Zhang, X. Y., Yang, M. H., & Torr, P. H. (2019). Res2net: A new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence.
    62. Gebrehiwot, A., Hashemi-Beni, L., Thompson, G., Kordjamshidi, P., & Langan, T. E. (2019). Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data. Sensors, 19(7), 1486.
    63. Gevaert, C. M., Persello, C., Nex, F., & Vosselman, G. (2018). A deep learning approach to DTM extraction from imagery using rule-based training labels. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 106-123.
    64. Gevaert, C. M., Persello, C., Sliuzas, R., & Vosselman, G. (2020). Monitoring household upgrading in unplanned settlements with unmanned aerial vehicles. International Journal of Applied Earth Observation and Geoinformation, 90, 102117.
    65. Ghiasi, G., Lin, T. Y., & Le, Q. V. (2019). Nas-fpn: Learning scalable feature pyramid architecture for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7036-7045.
    66. Giang, T. L., Dang, K. B., Le, Q. T., Nguyen, V. G., Tong, S. S., & Pham, V. M. (2020). U-Net convolutional networks for mining land cover classification based on high-resolution UAV imagery. IEEE Access, 8, 186257-186273.
    67. Gomes, M., Silva, J., Gonçalves, D., Zamboni, P., Perez, J., Batista, E., ... & Gonçalves, W. (2020). Mapping utility poles in aerial ortho Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
    68. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27.
    69. Gray, P. C., Bierlich, K. C., Mantell, S. A., Friedlaender, A. S., Goldbogen, J. A., & Johnston, D. W. (2019). Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry. Methods in Ecology and Evolution, 10(9), 1490-1500.
    70. Guo, T., Dong, J., Li, H., & Gao, Y. (2017, March). Simple convolutional neural network on image classification. In 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), 721-724. IEEE.
    71. Guo, Y. (2018). A survey on methods and theories of quantized neural networks. arXiv preprint arXiv:1808.04752. Hamdi, Z. M., Brandmeier, M., & Straub, C. (2019). Forest damage assessment using deep learning on high resolution remote sensing data. Remote Sensing, 11(17), 1976
    72. Hamdi, Z. M., Brandmeier, M., & Straub, C. (2019). Forest damage assessment using deep learning on high resolution remote sensing data. Remote Sensing, 11(17), 1976.
    73. Hamylton, S. M., Morris, R. H., Carvalho, R. C., Roder, N., Barlow, P., Mills, K., & Wang, L. (2020). Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. International Journal of Applied Earth Observation and Geoinformation, 89, 102085.
    74. He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , 9729-9738.
    75. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778).
    76. Hennessy, A., Clarke, K., & Lewis, M. (2020). Hyperspectral classification of plants: a review of waveband selection generalisability. Remote Sensing, 12(1), 113.
    77. Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.
    78. Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., & Bengio, Y. (2018). Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670.
    79. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8).
    80. Horning, N., Fleishman, E., Ersts, P. J., Fogarty, F. A., & Wohlfeil Zillig, M. (2020). Mapping of land cover with open‐source software and ultra‐high‐resolution imagery acquired with unmanned aerial vehicles. Remote Sensing in Ecology and Conservation, 6(4), 487-497.
    81. Hossain, M. D., & Chen, D. (2019). Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 115-134.
    82. Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 1.
    83. Hou, J., He, Y., Yang, H., Connor, T., Gao, J., Wang, Y., ... & Zhou, S. (2020). Identification of animal individuals using deep learning: A case study of giant panda. Biological Conservation, 242, 108414.
    84. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
    85. Hu, G., Yin, C., Wan, M., Zhang, Y., & Fang, Y. (2020). Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier. Biosystems Engineering, 194, 138-151.
    86. Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7132-7141).
    87. Hua, Y., Marcos, D., Mou, L., Zhu, X. X., & Tuia, D. (2021). Semantic segmentation of remote sensing images with sparse annotations. IEEE Geoscience and Remote Sensing Letters.
    88. Huang, G., Chen, D., Li, T., Wu, F., Van Der Maaten, L., & Weinberger, K. Q. (2017). Multi-scale dense convolutional networks for efficient prediction. arXiv preprint arXiv:1703.09844, 2(2).
    89. Ichim, L., & Popescu, D. (2020). Segmentation of vegetation and flood from aerial images based on decision fusion of neural networks. Remote Sensing, 12(15), 2490.
    90. Ienco, D., Gaetano, R., Dupaquier, C., & Maurel, P. (2017). Land cover classification via multitemporal spatial data by deep recurrent neural networks. IEEE Geoscience and Remote Sensing Letters, 14(10), 1685-1689.
    91. Imran, H. A., Mujahid, U., Wazir, S., Latif, U., & Mehmood, K. (2020). Embedded development boards for edge-ai: A comprehensive report. arXiv preprint arXiv:2009.00803.
    92. Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1125-1134).
    93. Jakovljevic, G., Govedarica, M., Alvarez-Taboada, F., & Pajic, V. (2019). Accuracy assessment of deep learning based classification of lidar and uav points clouds for dtm creation and flood risk mapping. Geosciences, 9(7), 323.
    94. Jia, S., Jiang, S., Lin, Z., Li, N., Xu, M., & Yu, S. (2021). A survey: Deep learning for hyperspectral image classification with few labeled samples. Neurocomputing, 448, 179-204.
    95. Jiang, Z., Ding, C., Liu, M., & Tao, D. (2019, October). Two-stage cascaded u-net: 1st place solution to brats challenge 2019 segmentation task. In International MICCAI Brainlesion Workshop (pp. 231-241). Springer, Cham.
    96. Kang, H., & Chen, C. (2020). Fast implementation of real-time fruit detection in apple orchards using deep learning. Computers and Electronics in Agriculture, 168, 105108.
    97. Kang, J., Fernandez-Beltran, R., Duan, P., Liu, S., & Plaza, A. J. (2020). Deep unsupervised embedding for remotely sensed images based on spatially augmented momentum contrast. IEEE Transactions on Geoscience and Remote Sensing, 59(3), 2598-2610.
    98. Kannojia, S. P., & Jaiswal, G. (2018). Effects of varying resolution on performance of CNN based image classification: An experimental study. Int. J. Comput. Sci. Eng, 6(9), 451-456.
    99. Karami, A., Crawford, M., & Delp, E. J. (2020). Automatic plant counting and location based on a few-shot learning technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5872-5886.
    100. Kellenberger, B., Marcos, D., & Tuia, D. (2018). Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning. Remote sensing of environment, 216, 139-153.
    101. Kerkech, M., Hafiane, A., & Canals, R. (2020). Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Computers and Electronics in Agriculture, 174, 105446.
    102. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent architectures of deep convolutional neural networks. arXiv. Preprint, 10.
    103. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8), 5455-5516.
    104. Khelifi, L., & Mignotte, M. (2020). Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis. IEEE Access, 8, 126385-126400.
    105. Kim, K., & Lee, H. S. (2020). Probabilistic anchor assignment with iou prediction for object detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16, 355-371. Springer International Publishing.
    106. Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2019). Panoptic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9404-9413).
    107. Kirillov, A., Wu, Y., He, K., & Girshick, R. (2020). Pointrend: Image segmentation as rendering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 9799-9808.
    108. Kitano, B. T., Mendes, C. C., Geus, A. R., Oliveira, H. C., & Souza, J. R. (2019). Corn plant counting using deep learning and UAV images. IEEE Geoscience and Remote Sensing Letters.
    109. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.
    110. Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778-782.
    111. Larsen, A., Hanigan, I., Reich, B. J., Qin, Y., Cope, M., Morgan, G., & Rappold, A. G. (2021). A deep learning approach to identify smoke plumes in satellite imagery in near-real time for health risk communication. Journal of exposure science & environmental epidemiology, 31(1), 170-176.
    112. Lathuilière, S., Mesejo, P., Alameda-Pineda, X., & Horaud, R. (2019). A comprehensive analysis of deep regression. IEEE transactions on pattern analysis and machine intelligence, 42(9), 2065-2081.
    113. Law, H., & Deng, J. (2018). Cornernet: Detecting objects as paired keypoints. In Proceedings of the European conference on computer vision (ECCV), 734-750.
    114. Lee, J., Kang, D., & Ha, S. (2020). S3NAS: Fast NPU-aware neural architecture search methodology. arXiv preprint arXiv:2009.02009.
    115. Lefkovits, S., Emerich, S., & Lefkovits, L. (2022). Boosting Unsupervised Dorsal Hand Vein Segmentation with U-Net Variants. Mathematics, 10(15), 2620.
    116. Li, C., Xu, C., Cui, Z., Wang, D., Zhang, T., & Yang, J. (2019, September). Feature-attentioned object detection in remote sensing imagery. In 2019 IEEE International Conference on Image Processing (ICIP), 3886-3890. IEEE.
    117. Li, L., Han, J., Yao, X., Cheng, G., & Guo, L. (2020). DLA-MatchNet for few-shot remote sensing image scene classification. IEEE Transactions on Geoscience and Remote Sensing.
    118. Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., & Benediktsson, J. A. (2019). Deep learning for hyperspectral image classification: An overview. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6690-6709.
    119. Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., ... & Yang, J. (2020). Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. arXiv preprint arXiv:2006.04388.
    120. Li, Y., Cao, Z., Lu, H., & Xu, W. (2020). Unsupervised domain adaptation for in-field cotton boll status identification. Computers and Electronics in Agriculture, 178, 105745.
    121. Li, Y., Chen, Y., Wang, N., & Zhang, Z. (2019). Scale-aware trident networks for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 6054-6063.
    122. Li, Y., Huang, Q., Pei, X., Jiao, L., & Shang, R. (2020). RADet: Refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images. Remote Sensing, 12(3), 389.
    123. Li, Y., Peng, B., He, L., Fan, K., Li, Z., & Tong, L. (2019). Road extraction from unmanned aerial vehicle remote sensing images based on improved neural networks. Sensors, 19(19), 4115.
    124. Li, Y., Zhang, H., Xue, X., Jiang, Y., & Shen, Q. (2018). Deep learning for remote sensing image classification: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), e1264.
    125. Licciardi, G., Marpu, P. R., Chanussot, J., & Benediktsson, J. A. (2011). Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geoscience and Remote Sensing Letters, 9(3), 447-451.
    126. Lin, D., Fu, K., Wang, Y., Xu, G., & Sun, X. (2017). MARTA GANs: Unsupervised representation learning for remote sensing image classification. IEEE Geoscience and Remote Sensing Letters, 14(11), 2092-2096.
    127. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2117-2125.
    128. Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path aggregation network for instance segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 8759-8768.
    129. Liu, W., & Qin, R. (2020). A multikernel domain adaptation method for unsupervised transfer learning on cross-source and cross-region remote sensing data classification. IEEE Transactions on Geoscience and Remote Sensing, 58(6), 4279-4289.
    130. Lobo Torres, D., Queiroz Feitosa, R., Nigri Happ, P., Elena Cue La Rosa, L., Marcato Junior, J., Martins, J., ... & Liesenberg, V. (2020). Applying fully convolutional architectures for semantic segmentation of a single tree species in urban environment on high resolution UAV optical imagery. Sensors, 20(2), 563.
    131. Lu, X., Li, B., Yue, Y., Li, Q., & Yan, J. (2019). Grid r-cnn plus: Faster and better. arXiv preprint arXiv:1906.05688.
    132. Ma, J., Jiang, X., Fan, A., Jiang, J., & Yan, J. (2021). Image matching from handcrafted to deep features: A survey. International Journal of Computer Vision, 129(1), 23-79.
    133. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS journal of photogrammetry and remote sensing, 152, 166-177.
    134. Makantasis, K., Karantzalos, K., Doulamis, A., & Doulamis, N. (2015, July). Deep supervised learning for hyperspectral data classification through convolutional neural networks. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4959-4962.
    135. Micheli-Tzanakou, E. (2011). Artificial neural networks: an overview. Network: Computation in Neural Systems, 22(1-4), 208-230.
    136. Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence.
    137. Minh, D. H. T., Ienco, D., Gaetano, R., Lalande, N., Ndikumana, E., Osman, F., & Maurel, P. (2018). Deep recurrent neural networks for winter vegetation quality mapping via multitemporal SAR Sentinel-1. IEEE Geoscience and Remote Sensing Letters, 15(3), 464-468.
    138. Mittal, S. (2019). A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform. Journal of Systems Architecture, 97, 428-442.
    139. Miyoshi, G. T., Arruda, M. D. S., Osco, L. P., Marcato Junior, J., Gonçalves, D. N., Imai, N. N., ... & Gonçalves, W. N. (2020). A novel deep learning method to identify single tree species in UAV-based hyperspectral images. Remote Sensing, 12(8), 1294.
    140. Nanni, L., Lumini, A., Ghidoni, S., & Maguolo, G. (2020). Stochastic selection of activation layers for convolutional neural networks. Sensors, 20(6), 1626.
    141. Nevavuori, P., Narra, N., Linna, P., & Lipping, T. (2020). Crop yield prediction using multitemporal uav data and spatio-temporal deep learning models. Remote Sensing, 12(23), 4000.
    142. Nezami, S., Khoramshahi, E., Nevalainen, O., Pölönen, I., & Honkavaara, E. (2020). Tree species classification of drone hyperspectral and rgb imagery with deep learning convolutional neural networks. Remote Sensing, 12(7), 1070.
    143. Nogueira, K., Dalla Mura, M., Chanussot, J., Schwartz, W. R., & Dos Santos, J. A. (2019). Dynamic multicontext segmentation of remote sensing images based on convolutional networks. IEEE Transactions on Geoscience and Remote Sensing, 57(10), 7503-7520.
    144. Neupane, B., Horanont, T., & Aryal, J. (2021). Deep learning-based semantic segmentation of urban features in satellite images: A review and meta-analysis. Remote Sensing, 13(4), 808.
    145. Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.
    146. Osco, L. P., de Arruda, M. D. S., Gonçalves, D. N., Dias, A., Batistoti, J., de Souza, M., ... & Gonçalves, W. N. (2021). A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 1-17.
    147. Osco, L. P., de Arruda, M. D. S., Junior, J. M., da Silva, N. B., Ramos, A. P. M., Moryia, É. A. S., ... & Gonçalves, W. N. (2020). A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 97-106.
    148. Osco, L. P., Nogueira, K., Ramos, A. P. M., Pinheiro, M. M. F., Furuya, D. E. G., Gonçalves, W. N., ... & dos Santos, J. A. (2021). Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery. Precision Agriculture, 1-18.
    149. O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.
    150. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., & Lin, D. (2019). Libra r-cnn: Towards balanced learning for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 821-830.
    151. Paoletti, M. E., Haut, J. M., Plaza, J., & Plaza, A. (2019). Deep learning classifiers for hyperspectral imaging: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 158, 279-317.
    152. Park, S., & Song, A. (2020). Discrepancy analysis for detecting candidate parcels requiring update of land category in cadastral map using hyperspectral UAV Images: A case study in Jeonju, South Korea. Remote Sensing, 12(3), 354.
    153. Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026.
    154. Paszke, A., Chaurasia, A., Kim, S., & Culurciello, E. (2016). Enet: A deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147.
    155. Penatti, O. A., Nogueira, K., & Dos Santos, J. A. (2015). Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 44-51.
    156. Peng, C., Zhang, X., Yu, G., Luo, G., & Sun, J. (2017). Large kernel matters--improve semantic segmentation by global convolutional network. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4353-4361.
    157. Petersson, H., Gustafsson, D., & Bergstrom, D. (2016, December). Hyperspectral image analysis using deep learning—A review. In 2016 sixth international conference on image processing theory, tools and applications (IPTA), pp. 1-6.
    158. Prochaska, J. X., Cornillon, P. C., & Reiman, D. M. (2021). Deep Learning of Sea Surface Temperature Patterns to Identify Ocean Extremes. Remote Sensing, 13(4), 744.
    159. Qiao, S., Chen, L. C., & Yuille, A. (2021). Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10213-10224.
    160. Qin, Z., Li, Z., Zhang, Z., Bao, Y., Yu, G., Peng, Y., & Sun, J. (2019). ThunderNet: Towards real-time generic object detection on mobile devices. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 6718-6727.
    161. Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., & Dollár, P. (2020). Designing network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10428-10436.
    162. Ramprasath, M., Anand, M. V., & Hariharan, S. (2018). Image classification using convolutional neural networks. International Journal of Pure and Applied Mathematics, 119(17), 1307-1319.
    163. Rivas, A., Chamoso, P., González-Briones, A., & Corchado, J. M. (2018). Detection of cattle using drones and convolutional neural networks. Sensors, 18(7), 2048.
    164. Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, 234-241.
    165. Sakib, S., Ahmed, N., Kabir, A. J., & Ahmed, H. (2019). An overview of convolutional neural network: its architecture and applications.
    166. Santos, A. A. D., Marcato Junior, J., Araújo, M. S., Di Martini, D. R., Tetila, E. C., Siqueira, H. L., ... & Gonçalves, W. N. (2019). Assessment of CNN-based methods for individual tree detection on images captured by RGB cameras attached to UAVs. Sensors, 19(16), 3595.
    167. Sarkar, D., Khan, T., & Laskar, R. H. (2020). Multi-parametric ANN modelling for interference rejection in UWB antennas. International Journal of Electronics, 107(12), 2068-2083.
    168. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
    169. Shanmugamani, R. (2018). Deep Learning for Computer Vision: Expert techniques to train advanced neural networks using TensorFlow and Keras. Packt Publishing Ltd.
    170. Sharma, V., & Mir, R. N. (2020). A comprehensive and systematic look up into deep learning based object detection techniques: A review. Computer Science Review, 38, 100301.
    171. Sheng, G., Yang, W., Xu, T., & Sun, H. (2012). High-resolution satellite scene classification using a sparse coding based multiple feature combination. International journal of remote sensing, 33(8), 2395-2412.
    172. Signoroni, A., Savardi, M., Baronio, A., & Benini, S. (2019). Deep learning meets hyperspectral image analysis: A multidisciplinary review. Journal of Imaging, 5(5), 52.
    173. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
    174. Soderholm, J. S., Kumjian, M. R., McCarthy, N., Maldonado, P., & Wang, M. (2020). Quantifying hail size distributions from the sky–application of drone aerial photogrammetry. Atmospheric Measurement Techniques, 13(2), 747-754.
    175. Soudy, M., Afify, Y. M., & Badr, N. (2022). GenericConv: A Generic Model for Image Scene Classification Using Few-Shot Learning. Information, 13(7), 315.
    176. Souza, R., Bento, M., Nogovitsyn, N., Chung, K. J., Loos, W., Lebel, R. M., & Frayne, R. (2020). Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction. Magnetic resonance imaging, 71, 140-153.
    177. Sriker, D., Cohen, D., Cahan, N., & Greenspan, H. (2021, February). Improved segmentation by adversarial U-Net. In Medical Imaging 2021: Computer-Aided Diagnosis 11597, 290-295.
    178. Su, Y., Wu, Y., Wang, M., Wang, F., & Cheng, J. (2019, July). Semantic segmentation of high resolution remote sensing image based on batch-attention mechanism. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 3856-3859.
    179. Sultana, F., Sufian, A., & Dutta, P. (2018, November). Advancements in image classification using convolutional neural network. In 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), 122-129.
    180. Sundaram, D. M., & Loganathan, A. (2020). FSSCaps-DetCountNet: fuzzy soft sets and CapsNet-based detection and counting network for monitoring animals from aerial images. Journal of Applied Remote Sensing, 14(2), 026521.
    181. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2818-2826.
    182. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018, October). A survey on deep transfer learning. In International conference on artificial neural networks, 270-279. Springer, Cham.
    183. Tetila, E. C., Machado, B. B., Menezes, G. K., Oliveira, A. D. S., Alvarez, M., Amorim, W. P., ... & Pistori, H. (2019). Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 17(5), 903-907.
    184. Thoma, M. (2016). A survey of semantic segmentation. arXiv preprint arXiv:1602.06541.
    185. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H. (2021, July). Training data-efficient image transformers & distillation through attention. In International Conference on Machine Learning, 10347-10357.
    186. Traore, B. B., Kamsu-Foguem, B., & Tangara, F. (2018). Deep convolution neural network for image recognition. Ecological Informatics, 48, 257-268.
    187. Tsagkatakis, G., Aidini, A., Fotiadou, K., Giannopoulos, M., Pentari, A., & Tsakalides, P. (2019). Survey of deep-learning approaches for remote sensing observation enhancement. Sensors, 19(18), 3929.
    188. Tuia, D., Persello, C., & Bruzzone, L. (2021). Recent advances in domain adaptation for the classification of remote sensing data. arXiv preprint arXiv:2104.07778.
    189. Vaddi, R., & Manoharan, P. (2020). CNN based hyperspectral image classification using unsupervised band selection and structure-preserving spatial features. Infrared Physics & Technology, 110, 103457.
    190. Van Dao, D., Jaafari, A., Bayat, M., Mafi-Gholami, D., Qi, C., Moayedi, H., ... & Pham, B. T. (2020). A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena, 188, 104451.
    191. Vega Arellano, J. P. (2022). Stroke Detection with Deep Learning (Doctoral dissertation, SRH Hochschule Heidelberg).
    192. Wang, J., Chen, K., Yang, S., Loy, C. C., & Lin, D. (2019). Region proposal by guided anchoring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2965-2974.
    193. Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., ... & Xiao, B. (2020). Deep high-resolution representation learning for visual recognition. IEEE transactions on pattern analysis and machine intelligence.
    194. Wang, J., Yu, L. C., Lai, K. R., & Zhang, X. (2016, August). Dimensional sentiment analysis using a regional CNN-LSTM model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 225-230.
    195. Wang, J., Zhang, W., Cao, Y., Chen, K., Pang, J., Gong, T., ... & Lin, D. (2020, August). Side-aware boundary localization for more precise object detection. In European Conference on Computer Vision, 403-419.
    196. Wang, J., Zhang, X., Lv, P., Zhou, L., & Wang, H. (2021). EAR-U-Net: EfficientNet and attention-based residual U-Net for automatic liver segmentation in CT. arXiv preprint arXiv:2110.01014.
    197. Wang, S., Zhou, J., Lei, T., Wu, H., Zhang, X., Ma, J., & Zhong, H. (2020). Estimating Land Surface Temperature from Satellite Passive Microwave Observations with the Traditional Neural Network, Deep Belief Network, and Convolutional Neural Network. Remote Sensing, 12(17), 2691.
    198. Wang, Y., Ding, W., Zhang, R., & Li, H. (2020). Boundary-aware multitask learning for remote sensing imagery. IEEE Journal of selected topics in applied earth observations and remote sensing, 14, 951-963.
    199. Wu, T., Tang, S., Zhang, R., Cao, J., & Zhang, Y. (2020). Cgnet: A light-weight context guided network for semantic segmentation. IEEE Transactions on Image Processing, 30, 1169-1179.
    200. Wu, X., Sahoo, D., & Hoi, S. C. (2020). Recent advances in deep learning for object detection. Neurocomputing, 396, 39-64.
    201. Xia, G. S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., ... & Zhang, L. (2018). DOTA: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE conference on computer vision and pattern recognition, 3974-3983.
    202. Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,1492-1500.
    203. Xu, R., Tao, Y., Lu, Z., & Zhong, Y. (2018). Attention-mechanism-containing neural networks for high-resolution remote sensing image classification. Remote Sensing, 10(10), 1602.
    204. Yang, M. D., Tseng, H. H., Hsu, Y. C., & Tsai, H. P. (2020). Semantic segmentation using deep learning with vegetation indices for rice lodging identification in multi-date UAV visible images. Remote Sensing, 12(4), 633.
    205. Yao, C., Luo, X., Zhao, Y., Zeng, W., & Chen, X. (2017, December). A review on image classification of remote sensing using deep learning. In 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 1947-1955.
    206. Yin, M., Yao, Z., Cao, Y., Li, X., Zhang, Z., Lin, S., & Hu, H. (2020, August). Disentangled non-local neural networks. In European Conference on Computer Vision (pp. 191-207). Springer, Cham.
    207. Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., ... & Zhang, L. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241, 111716.
    208. Yuan, X., Shi, J., & Gu, L. (2021). A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Systems with Applications, 169, 114417.
    209. Zhang, C., Atkinson, P. M., George, C., Wen, Z., Diazgranados, M., & Gerard, F. Identifying and mapping individual plants in a highly diverse high-elevation ecosyst
    210. Zhang, G., Wang, M., & Liu, K. (2019). Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. International Journal of Disaster Risk Science, 10(3), 386-403.
    211. Zhang, H., Chang, H., Ma, B., Wang, N., & Chen, X. (2020, August). Dynamic R-CNN: Towards high quality object detection via dynamic training. In European Conference on Computer Vision , 260-275.
    212. Zhang, H., Liptrott, M., Bessis, N., & Cheng, J. (2019, September). Real-time traffic analysis using deep learning techniques and UAV based video. In 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 1-5.
    213. Zhang, H., Wang, Y., Dayoub, F., & Sunderhauf, N. (2021). Varifocalnet: An iou-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8514-8523.
    214. Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., ... & Smola, A. (2020). Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955.
    215. Zhang, L., Zhang, L., & Du, B. (2016). Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2), 22-40.
    216. Zhang, S., Chi, C., Yao, Y., Lei, Z., & Li, S. Z. (2020). Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 9759-9768.
    217. Zhang, X., Han, L., Han, L., & Zhu, L. (2020). How well do deep learning-based methods for land cover classification and object detection perform on high resolution remote sensing imagery?. Remote Sensing, 12(3), 417.
    218. Zhang, X., Jin, J., Lan, Z., Li, C., Fan, M., Wang, Y., ... & Zhang, Y. (2020). ICENET: A semantic segmentation deep network for river ice by fusing positional and channel-wise attentive features. Remote Sensing, 12(2), 221.
    219. Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition, 6848-6856.
    220. Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition,2881-2890.
    221. Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232.
    222. Zheng, Z., Lei, L., Sun, H., & Kuang, G. (2020, July). A Review of Remote Sensing Image Object Detection Algorithms Based on Deep Learning. In 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC), 34-43.
    223. Zhou, D., Wang, G., He, G., Long, T., Yin, R., Zhang, Z., ... & Luo, B. (2020). Robust Building Extraction for High Spatial Resolution Remote Sensing Images with Self-Attention Network. Sensors, 20(24), 7241.
    224. Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture for medical image segmentation. In Deep learning in medical image analysis and multimodal learning for clinical decision support, 3-11.
    225. Zhu, C., He, Y., & Savvides, M. (2019). Feature selective anchor-free module for single-shot object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 840-849.
    226. Zhu, R., Yan, L., Mo, N., & Liu, Y. (2019). Attention-based deep feature fusion for the scene classification of high-resolution remote sensing images. Remote Sensing, 11(17), 1996.
    227. Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8-36.
    228. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... & He, Q. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43-76.
    229. Zou, Q., Ni, L., Zhang, T., & Wang, Q. (2015). Deep learning based feature selection for remote sensing scene classification. IEEE Geoscience and Remote Sensing Letters, 12(11), 2321-2325.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Malque Publishing

How to cite

Ahmed, S. A., Desa, H., Easa, H. K., Hussain, A.-S. T., Taha, T. A., Salih, S. Q., Hasan, R. A., Ahmed, O. K., & Ng, P. S. J. (2024). Advancements in UAV image semantic segmentation: A comprehensive literature review. Multidisciplinary Reviews, 7(6), 2024118. https://doi.org/10.31893/multirev.2024118
  • Article viewed - 235
  • PDF downloaded - 73