• Abstract

    Approaches to harnessing energy from renewable sources, such as wind, water, oceanic waves, and solar, are garnering heightened attention. Although these technologies are often discussed in isolation, the hybrid approach holds great promise and represents a revolutionary advancement in energy generation. Integrated energy systems of this nature not only facilitate zero-emission power generation but also foster synergies among different approaches, ultimately enhancing power generation efficiency. In this paper, we provide a comprehensive overview of renewable energy technologies, encompassing wind, hydro, oceanic wave, and floating solar energy systems. We delve into both the advantages and disadvantages of floating photovoltaic (PV) technology, as well as the intricacies of integrated offshore wind and wave technology.

  • References

    1. Acharya, M., Devraj, S., (2019). Floating Solar Photovoltaic (FSPV): A Third Pillar to Solar PV Sector.TERI Discussion Paper, Output of The ETC India Project, New Delhi,The Energy and Resources Institute.
    2. Cazzaniga, R., & Rosa-Clot, M. (2021). The booming of floating PV. Solar Energy , 219, 3-10 .
    3. Chen, W., Gao, F., Meng, X., Chen, B., Ren, A. (2016). A high-power integrated generation unit for offshore wind power and ocean wave energy. Ocean Engineering, 128, 41-47.
    4. Editorial Floating solar, (2021) Beyond the state-of-the-art technology. Solar Energy , 219, 1-2.
    5. Kelly, E., Patrick, S., Michael, G., Dylan, H., Donna, H., Anthony, L. (2017). An improved global wind resource estimate for integrated assessment models. Energy Economics, 64(C), 552-567.
    6. Exley, G., Armstrong , A., Page, T., Jones, I. D. (2021). Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Solar Energy, (In press). DOI:10.1016/j.solener.2021.01.076
    7. Golroodbari, M., Vaartjas, D. F., Meit, J., VanHoeken, A. P., Eberveld, M., Jonker, H., VanSark, M. (2019). Pooling the cable: A techno-economic feasibility study of integrating offshore floating photovoltaic solar technology within an offshore wind park. Solar Energy, 219, 65-74.
    8. Gorjian, S., Sharon, H., Ebadi, H., Kant, K., Scavo, F. B., Tina, G. M. (2021). Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems. Journal of Cleaner Production,278, 124285.
    9. Hooper, T., Armstrong, A., Vlaswinkel, B. (2021). Environmental impacts and benefits of marine floating solar. Solar Energy, 219, 11-14.
    10. Howe, D., Nader, J. R., Macfarlane, G., (2020). Experimental investigation of multiple Oscillating Water Column Wave Energy Converters integrated in a floating breakwater: Energy extraction Performance. Applied Ocean Research , 97, 102086.
    11. Jiang, Z. (2021). Installation of offshore wind turbines: A technical review. Renewable and Sustainable Energy Reviews, 139, 110576.
    12. Kjeldstad, T., Lindholm, D., Marstein, E., Selj. (2021). Cooling of floating photovoltaics and the importance of water temperature. Solar Energy, 218, 544-551.
    13. Krishnaveni, N., Anbarasu, P., Vigneshkumar, D. (2016). A Survey on Floating Solar Power System. International Journal of Current Research and Modern Education, Special Issue, NCFTCCPS – 2016.
    14. Leijon, J., Bostrom, C. (2018). Freshwater production from the motion of ocean waves - A review. Desalination,435, 161-171 .
    15. Lopez, M., Rodriguez, N., Iglesias, G. (2020). Combined floating offshore wind and solar PV. Journal of Marine Science and Engineering, 8, 576. DOI:10.3390/jmse8080576
    16. Nguyen, H. P., Wang, C. M., Tay, Z. Y., Luong, V. H. (2020). Wave energy converter and large floating platform integration: A review. Ocean Engineering, 213, 107768.
    17. Pakenham, B., Ermakova A., Mehmanparast, A. (2021). A review of life extension strategies for offshore wind farms using techno economic assessments. Energies, 14, 2-23 .
    18. Santos, L. C., Bento, A. R., Soares, C. G. (2020). The economic feasibility of floating offshore wave energy farms in the north of Spain. Energies, 13, 806-825.
    19. Solomin, E., Sirotkin, E., Cuce, E., Selvanathan, S. P. (2021). Hybrid floating solar plant designs: A review. Energies,14,2751. DOI:10.3390/en14102751.
    20. Tiernan, K. L., Sharman, K. T. (2020). Review of hybrid offshore wind and wave energy systems. Journal of Physics: Conference Series, 1452, 012016 DOI:10.1088/1742-6596/1452/1/012016.
    21. Tirpude, R., Katare, P., Rajurkar, S., Awari, G., Dalkilic, A., Wongwises, S. (2023). Reduction of emissions with cow urine as a catalyst in SCR system using response surface methodology. Alexandria Engineering Journal, 67,707- 721. DOI: 10.1016/j.aej.2022.08.050.
    22. Xu, S., Wang, S., Soares, C. G. (2019). Review of mooring design for floating wave energy converters. Renewable and Sustainable Energy Reviews, 111, 595-621.
    23. Yousuf, H., Khokhar, M. Q., Zahid, M. A., Kim, J., Kim, Y., Cho, E-Chel. Cho, Y. H., Yi, J. (2020). A Review on Floating Photovoltaic Technology (FPVT). Current Photovoltaic Research, 8(3),67-78 .
    24. Zappa, W., Broek, M. (2018). Analyzing the potential of integrating wind and solar power in Europe using spatial optimization under various scenarios. Renewable and Sustainable Energy Reviews, 94, 1192-1216.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Malque Publishing

How to cite

Katare, P., Bopche, S., Tamkhade, P., Gurav, R., Nalavade, S., & Awad, M. M. (2024). Technological feasibility and challenges of hybrids: wave, hydro, offshore-wind and floating solar energy harnessing. Multidisciplinary Reviews, 7(3), 2024054. https://doi.org/10.31893/multirev.2024054
  • Article viewed - 853
  • PDF downloaded - 435