• Abstract

    Within the realm of plant biology, a sophisticated and intricate antioxidative system (AOS) exists to combat detrimental reactive species (RS), with a primary focus on reactive oxygen species (ROS). This intricate network functions to preserve cellular homeostasis. Originally, reactive oxygen species (ROS) were identified as harmful byproducts of aerobic metabolic processes. It is a review paper that descries ROS in brief along with its production, source, reactivity, functions and many more. At first it describes about peroxisomes that helps in production of H2O2 & O2- & Production of ROS in vivo & in vitro. Secondly it describes about its Source or origin i.e. from Mitochondria, Transition Metal Ions, ER etc and it also describes about its chemical properties & reactivity of different ROS i.e. H2O2, HO , O2●- & HO2 in different ways including Haber- Weiss Reaction which are mentioned in details . We also report about the role of ROS in germination process and its functions. To conclude we have reviewed ROS and compiled in a manner which will altogether shed a new light on the roles of ROS in a plant species.

  • References

    1. Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P,Jullien M (2004)Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: Studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488. DOI: 10.1007/s00425-004-1251-4
    2. Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling KQ, Huang X, Moir RD, Wang D, Sayre LM(2004) Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-beta. Biochemistry 43:560–568. DOI: 10.1007/s00425-004-1251-4
    3. Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant Cell Environment 34:980-993. DOI: 10.1111/j.1365-3040.2011.02298.x
    4. Bailly C, Bogatek-Leszczynska R, Côme D, Corbineau F (2002) Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Science Research 12:47–55. DOI: 10.1079/SSR200197
    5. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331:806–814. DOI: 10.1016/j.crvi.2008.07.022
    6. Bakhmutova-Albert EV, Yao H, Denevan DE, Richardson DE (2010) Kinetics and mechanism of peroxymonocarbonate formation. Inorganic Chemistry 49:11287–11296. DOI: 10.1021/ic1007389
    7. Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Pérez-Alfocea F&Hernández J A (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 33:981-994. DOI: 10.1111/j.1365-3040.2010.02120.x
    8. Basbouss-Serhal I, Pateyron S, Cochet F, Leymarie J, Bailly C (2017) 5′ to 3′ mRNA decay contributes to the regulation of Arabidopsis seed germination by dormancy. Plant Physiol. 173:1709–1723. DOI: 10.1104/pp.16.0193
    9. Baskin CC, Baskin JM (1998) Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination, Elsevier. DOI: https://doi.org/10.1016/B978-0-12-080260-9.X5000-3
    10. BentsinkL,Koornneef M (2008)Seed Dormancy and Germination. The Arabidopsis Book 6:e0119. DOI: 10.1199/tab.0119.
    11. Berlett BS, Levine RL, Stadtman ER(1996) Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin. Journal of biological chemistry 271:4177–4182. DOI: 10.1074/jbc.271.8.4177
    12. Berlett BS,Friguet B, Yim MB, Chock PB, Stadtman ER (1996) Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: Relevance to signal transduction. Proceedings of the National Academy of Sciences USA 93:1776–1780. DOI: 10.1073/pnas.93.5.1776
    13. Bethke PC, Lonsdale JE, Fath A & Jones RL (1999) Hormonally regulated programmed cell death in barley aleurone cells. The Plant Cell 11:1033–1046. DOI: 10.1105/tpc.11.6.1033
    14. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066 DOI: https://doi.org/10.1105/tpc.9.7.1055
    15. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology 82:493–512. DOI:10.1007/s00204-008-0313-y.
    16. Bi C, Ma Y, Wu Z, Yu YT, Liang S, L K, Wang XF (2017) Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination. Plant Molecular Biology 94:197-213. DOI: 10.1007/s11103-017-0603-y
    17. Bielski BHJ, Arudi RL, Sutherland MW (1983) A Study of the Reactivity of HO2/O2- with Unsaturated Fatty-Acids. The Journal of Biological Chemistry 258:4759–4761. DOI:https://doi.org/10.1016/S0021-9258(18)32488-8
    18. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O2● Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data 14:1041–1100. DOI:https://doi.org/10.1063/1.555739
    19. Bonizzi G,Piette J, Merville MP, Bours V (2000) Cell type-specific role for reactive oxygen species in nuclear factor-kappaB activation by interleukin-1. Biochemiatry and Pharmacology 59:7–11. DOI: 10.1016/s0006-2952(99)00290-7
    20. Bove J, Lucas P, Godin B, Oge L, Jullien M, Grappin P (2005) Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotianaplumbaginifolia. Plant Molecular Biology 57:593–612. DOI: 10.1007/s11103-005-0953-8
    21. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Experimental Gerontology 45:466–472 DOI: 10.1016/j.exger.2010.01.003
    22. Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biology and Medicine 100:14–31. DOI: 10.1016/j.freeradbiomed.2016.04.001
    23. Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radical Biology and Medicine 18:1033–1077.DOI: 10.1016/0891-5849(94)00209-3
    24. Breusegem FV, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiology 147:978. 10.1104/pp.108.122325. DOI: 10.1104/pp.108.122325
    25. Brummell DA, Dal Cin V, Lurie S, Crisosto CH, Labavitch JM (2004) Cell wall metabolism during the development of chilling injury in cold-stored peach fruit: Association of mealiness with arrested disassembly of cell wall pectins. Journal of Experimental Botany 55:2041–2052. DOI: https://doi.org/10.1093/jxb/erh228
    26. Buchanan BB, Balmer Y (2005) Redox regulation: A broadening horizon. Annual Review of Plant Biology 56:187–220. DOI: 10.1146/annurev.arplant.56.032604.144246
    27. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical-Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen-Atoms and Hydroxyl Radicals (.OH/.O-) in Aqueous-Solution. Journal of Physical and Chemical Reference Data 17:513–886. DOI: https://doi.org/10.1063/1.555805
    28. Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. The Plant Journal 15:165–171. DOI: 10.1046/j.1365-313x.1998.00191.x
    29. Cheignon C, Faller P, Testemale D, Hureau C, Collin F (2016) Metal-catalyzed oxidation of Abeta and the resulting reorganization of Cu binding sites promote ROS production. Metallomics 8:1081–1089. DOI: 10.1039/c6mt00150e
    30. Cheignon C, Hureau C, Collin F (2018) Real-time evolution of Aβ40 metal-catalyzed oxidation reveals Asp1 as the main target and a dependence on metal binding site. Inorganica Chimica Acta 472:111–118. DOI: 10.1016/j.ica.2017.07.031
    31. Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH, Vanková R, Amir R, Miller G (2014) ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiology 166:370-383 DOI: 10.1104/pp.114.245324
    32. ChenSX, Schopfer P (1999)Hydroxyl-radical production in physiological reactions: A novel function of peroxidase. European Journal of Biochemistry 260:726–735. DOI: 10.1046/j.1432-1327.1999.00199.x
    33. Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seed dormancy in arabidopsis. Plant Physiology 142:1493–1510. DOI: 10.1104/pp.106.087452
    34. Corbineau F, Bagniol S, Côme D (1989) Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Israel Journal of Botany 39:313–325. DOI: https://doi.org/10.1080/0021213X.1990.10677156.
    35. Davies MJ, Fu S, Dean RT (1995) Protein hydroperoxides can give rise to reactive free radicals. Biochemical Journal 305:643–649. DOI: 10.1042/bj3050643
    36. Davydov DR (2011) Microsomal monooxygenase as a multienzyme system: the role of P450-P450 interactions. Expert Opinion on Drug Metabolism & Toxicology 7:543–558. DOI: 10.1517/17425255.2011.562194
    37. de Diego JG, David Rodriguez F, Rodriguez Lorenzo JL, Grappin P, Cervantes, E (2006) cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences. Journal of Plant Physiology 163:452–462. DOI: 10.1016/j.jplph.2005.04.032
    38. De DuveC, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiological Reviews, 46:323–357. DOI: 10.1152/physrev.1966.46.2.323
    39. Del Rio LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Archives of Biochemistry and Biophysics 506:1–11 DOI: 10.1016/j.abb.2010.10.022q1
    40. Del Río LA, López-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant and Cell Physiology 57:1364–1376 DOI: https://doi.org/10.1093/pcp/pcw076
    41. Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. The Plant Journal 52:673-689. DOI: 10.1111/j.1365-313X.2007.03266.x
    42. Ellgaard L, Ruddock LW(2005) The human proteidisulphide isomerase family: substrate interactions and functional properties. EMBO Reports 6:28–32 DOI: 10.1038/sj.embor.7400311
    43. El-MaaroufBouteau H, Job C, Job D, CorbineauF, Bailly C (2007) ROS signaling in seed dormancy alleviation. Plant Signaling & Behavior 2:362–364. DOI: 10.4161/psb.2.5.4460
    44. Erben Russ M, Michel C, Bors W, Saran M (1987) Absolute Rate Constants of Alkoxyl Radical Reactions in Aqueous-Solution. The Journal of Physical Chemistry. 91:2362–2365. DOI: https://doi.org/10.1021/j100293a033.
    45. Estabrook RW (2003) A passion for P450s (rememberances of the early history of research on cytochrome P450). Drug Metabolism and Disposition December 2003 31:1461–1473. DOI:10.1124/dmd.31.12.1461.
    46. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytologist 171:501–523. DOI:https://doi.org/10.1111/j.1469-8137.2006.01787.x
    47. Forman HJ, Kennedy J (1976) Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Archives of Biochemistry and Biophysics 173:219–224. DOI: 10.1016/0003-9861(76)90252-6
    48. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11:861– 905. DOI: 10.1089/ars.2008.2177
    49. Friedkin M, Roberts D (1954) The enzymatic synthesis of nucleosides. I. Thymidine phosphorylase in mammalian tissue. Journal of Biological Chemistry 207:245–256.
    50. Fritz R, Bol J, Hebling U (2007) Compartment-dependent management of H2O2 by peroxisomes. Free Radical Biology & Medicine 42:1119–1129. DOI:https://doi.org/10.1016/j.freeradbiomed.2007.01.014
    51. Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochemical Journal 332:507–515. DOI: 10.1042/bj3320507
    52. Fry SC, Dumville JC, Miller JG (2001) Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit. Biochemical Journal 357:729–737. DOI: 10.1042/0264-6021:3570729
    53. Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiology 141:341–345. DOI:https://doi.org/10.1104/pp.106.079079
    54. Gardner HW (1989) Oxygen radical chemistry of polyunsaturated fatty acids. Free Radical Biology and Medicine 7:65–86. DOI: 10.1016/0891-5849(89)90102-0
    55. Garrison WM (1987) Reaction-Mechanisms in the Radiolysis of Peptides, Polypeptides, and Proteins. Chemical Reviews, 87:381–398. DOI: https://doi.org/10.1021/cr00078a006
    56. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P(2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell. 12:1117–1126. DOI: 10.1105/tpc.12.7.1117
    57. Gidrol X, Lin WS, Degousee N, Yip SF, Kush A (1994) Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. European Journal of Biochemistry 224:21–28. DOI: 10.1111/j.1432-1033.1994.tb19990.x
    58. Gilbert BC, Holmes RGG, Laue HAH, Norman ROC (1976) Electron-Spin Resonance Studies. 50. Reactions of Alkoxyl Radicals Generated from Alkyl Hydroperoxides and Titanium(Iii) Ion in Aqueous-Solution. Journal of the Chemical Society, Perkin Transactions 2:1047–1052. DOI:https://doi.org/10.1039/P29760001047
    59. Godber BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. Journal of biological chemistry 275, 7757–7763. DOI: 10.1074/jbc.275.11.7757
    60. Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiology 124:21–30. DOI: 10.1104/pp.124.1.21
    61. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 147:332–351. DOI:https://doi.org/10.1098/rspa.1934.0221
    62. Halliwell B, Gutteridge JMC (1999) Free Radicals in Biology and Medicine. Oxford University Press 3:1-25.
    63. Hawkins CL, Davies MJ (2001) Generation and propagation of radical reactions on proteins. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1504:196–219. DOI: 10.1016/s0005-2728(00)00252-8.
    64. Hayat El-Maarouf-Bouteau, ChristopheB (2008) Oxidative signaling in seed germination and dormancy. Plant signaling & behavior 3:175–182. DOI: 10.4161/psb.3.3.5539
    65. Hendricks SB, Taylorson RB (1975) Breaking of seed dormancy by catalase inhibition. Proceedings of the National Academy of Sciences 72:306–309. DOI:https://doi.org/10.1073/pnas.72.1.306
    66. Hendry GAF(1993) Oxygen, free radical processes and seed longevity. Seed Science Research 3, 141–153. DOI: https://doi.org/10.1017/S0960258500001720
    67. Hille R, Hall J, Basu P (2014)The mononuclear molybdenum enzymes. Chemical Reviews 114, 3963–4038. DOI:https://doi.org/10.1021/cr400443z
    68. Hite DRC, Auh C, Scandalios JG (1999) Catalase activity and hydrogen peroxide levels are inversely correlated in maize scutella during seed germination. Redox Report 4:29–34. DOI:https://doi.org/10.1179/135100099101534710
    69. Hoshi T, Heinemann S (2001) Regulation of cell function by methionine oxidation and reduction. Journal of Physiology 531, 1–11. doi: 10.1111/j.1469-7793.2001.0001j.x
    70. https://chem.nju.edu.cn/chemen/1e/b1/c26900a466609/page.htm [Accessed on 20th September 2023]
    71. Ingelman-Sundberg M,Ronis MJ, Lindros KO,Eliasson E, Zhukov A (1994) Ethanol-inducible cytochrome P4502E1: regulation, enzymology and molecular biology. Alcohol and Alcoholism 2:131–139
    72. Ishibashi Y, Aoki N, Kasa S, Sakamoto M, Kai K, Tomokiyo R, Watabe G, Yuasa T, Iwaya-Inoue M (2017) The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Frontiers in Plant Science 8:275. DOI:https://doi.org/10.3389/fpls.2017.00275
    73. Janata E, Schuler RH (1982) Rate constant for scavenging eaq- in nitrous oxide-saturated solutions. The Journal of Physical Chemistry 86:2078–2084. DOI:https://doi.org/10.1021/J100208A035
    74. Job C, Rajjou L, LovignyY, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiology 138:790–802. DOI: 10.1104/pp.105.062778
    75. Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, Di Lisa F (2014) Monoamine oxidases as sources of oxidants in the heart. Journal of Molecular and Cellular Cardiology 73:34–42. DOI: 10.1016/j.yjmcc.2013.12.032
    76. Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports 9:829–837. DOI: 10.1007/s00299-003-0591-z
    77. Kissner R, Nauser T,Bugnon P, Lye PGKoppenol WH (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chemical research in toxicology 10, 1285–1292. DOI: 10.1021/tx970160x
    78. Koorneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Current opinion in plant biology 5:33–36. DOI: 10.1016/s1369-5266(01)00219-9
    79. Kowalik-Jankowska T, Ruta M, Wisniewska K,Lankiewicz L, Dyba M (2004) Products of Cu(II)-catalyzed oxidation in the presence of hydrogen peroxide of the 1-10, 1-16 fragments of human and mouse beta-amyloid peptide. Journal of inorganic biochemistry 98, 940–950. DOI: 10.1016/j.jinorgbio.2004.03.001
    80. Kranner I, Birtic S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death? Free radical biology & medicine 15:2155–2165. DOI: 10.1016/j.freeradbiomed.2006.02.013
    81. Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany 72:93–105. https:// doi.org/10.1016/j.envexpbot.2010.05.005
    82. Kranner I, Grill D (1996)Significance of thiol-disulfide exchange in resting stages of plant development. Botanica Acta 109:8–14
    83. Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15:281–307 doi:10.1079/SSR2005218
    84. Kwak JM, Nguyen V, Schoeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant physiology 141:323–329 DOI: DOI:https://doi.org/10.1104/pp.106.079004
    85. Lal, M (1994) Radiation-Induced Oxidation of Sulfhydryl Molecules in Aqueous-Solutions - a Comprehensive Review Radiation Physics and Chemistry 43:595–611. DOI: 10.1016/0969-806X(94)90174-0
    86. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annual review of plant physiology and plant molecular biology 48:251–275 DOI: 10.1146/annurev.arplant.48.1.251
    87. Lee CM, LeeJ, Nam MJ, Choi YS, Park SH (2019) TomentosinDisplays Anti-Carcinogenic Effect in Human Osteosarcoma MG-63 Cells via the Induction of Intracellular Reactive Oxygen Species. International journal of molecular sciences 20:1508. DOI: 10.3390/ijms20061508
    88. Leubner-Metzger G (2005) Beta-1,3-glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. The Plant journal : for cell and molecular biology 41:133–145. DOI: 10.1111/j.1365-313X.2004.02284.x
    89. Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O(2)(.-), H(2)O(2), and (.)OH) by maize roots and their role in wall loosening and elongation growth. Plant physiology 136:3114–3123. DOI: 10.1104/pp.104.044784
    90. Manganas P, MacPherson L, & Tokatlidis, K (2017). Oxidative protein biogenesis and redox regulation in the mitochondrial intermembrane space. Cell and tissue research 367: 43-57. 10.1007/s00441-016-2488-5
    91. Matthews RW, Sangster DF (1965) Measurement by Benzoate Radiolytic Decarboxylation of Relative Rate Constants for Hydroxyl Radical Reactions. The Journal of Physical Chemistry 69, 1938–1946. DOI:https://doi.org/10.1021/j100890a025
    92. Maya-Ampudia V, Bernal-Lugo I (2006) Redox-sensitive target detection in gibberellic acid-induced barley aleurone layer. Free radical biology & medicine 40:1362–1368. DOI: 10.1016/j.freeradbiomed.2005.12.004
    93. McDonald MB (1999) Seed deterioration: Physiology, repair and assessment. Seed Science and Technology 27:177–237
    94. Moller B, Munck L (2002) Seed vigour in relation to heat sensitivity and heat resistance in barley evaluated by multivariate data analysis. Journal of the Institute Brewing 108(2):286-293. DOI:10.1002/j.2050-0416.2002.tb00553.x
    95. Morkunas I, Bednarski W, Kozlowska M (2004) Response of embryo axes of germinating seeds of yellow lupine to Fusarium oxysporum. Plant physiology and biochemistry 42:493–499. DOI: 10.1016/j.plaphy.2004.05.007
    96. Morohashi Y (2002) Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. Journal of Experimental Botany 53:1643–1650. DOI:https://doi.org/10.1093/jxb/erf012
    97. Müller K, Heß B, Leubner-Metzger G (2007) A role for reactive oxygen species in endosperm weakening. Seeds: Biology, Development and Ecology 287–295
    98. Munoz-Rugeles L, Galano A, Alvarez-Idaboy JR (2018) The other side of the superoxide radical anion: Its ability to chemically repair DNA oxidized sites. Chemical Communications 54:13710–13713. DOI:https://doi.org/10.1039/C8CC07834C
    99. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochemical journal 417(1): 1-13. DOI:10.1042/BJ20081386
    100. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Current opinion in plant biology 5:388–395. DOI: 10.1016/s1369-5266(02)00282-0
    101. Neta P, Huie RE, Ross AB (1990) Rate constants for reactions of peroxyl radicals in fluid solutions. Journal of Physical and Chemical Reference Data 19:413–513. DOI:https://doi.org/10.1063/1.555854
    102. Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free radical biology & medicine 66:3–12. DOI: 10.1016/j.freeradbiomed.2013.03.022
    103. Nonogaki H (2014). Seed dormancy and germination—emerging mechanisms and new hypotheses. Frontiers in plant science 5: 233. DOI: 10.3389/fpls.2014.00233
    104. Oracz K, Bouteau HE-M, Farrant JM, Cooper K, Belghazi M, Job C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. The Plant Journal 50, 452–465. DOI:https://doi.org/10.1111/j.1365-313X.2007.03063.x
    105. Oracz K, El-MaaroufBouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. The Plant Journal 50:452–465. DOI: 10.1111/j.1365-313X.2007.03063.x
    106. Ortiz-Espı́n A, Iglesias-Fernández R, Calderón A, Carbonero P, Sevilla F, Jiménez A (2017) Mitochondrial at Trxo1 is transcriptionally regulated byAtbZIP9 and AtAZF2 and affects seed germination under saline conditions. Journal of experimental botany 68:1025-1038. DOI: 10.1093/jxb/erx012
    107. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiological Reviews 87:315–424. DOI: 10.1152/physrev.00029.2006
    108. Palma K, Kermode AR (2003) Metabolism of hydrogen peroxide during reserve mobilization and programmed cell death of barley (Hordeum vulgare L.) aleurone layer cells. Free Radical Biology and Medicine 35:1261–1270. DOI: 10.1016/s0891-5849(03)00511-2
    109. Panieri E, Santor MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death & Disease, 7:e2253. DOI:https://doi.org/10.1038/cddis.2016.105
    110. Pattnaik B, Chaturvedi N, Kar D (2016) Germination and seedling growth of some selected agricultural crops under various abiotic stresses. Internationl Journal of Pharmacy and Pharmaceutical Sciences 8:360-364
    111. Pergo Em, Ishii-Iwamoto el (2011) Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allelochemicals. Journal of chemical ecology 37:500-513. DOI: 10.1007/s10886-011-9945-0
    112. Rabilloud T, Heller M, Rigobello MP, Bindoli A, Aebersold R, Lunardi J (2001) The mitochondrial antioxidant defense system and its response to oxidative stress. Proteomics 1:1105–1110. DOI:https://doi.org/10.1161/hh0402.105757
    113. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA (1991) Detection of catalase in rat heart mitochondria. Journal of Biological Chemistry 266:22028–22034. DOI:https://doi.org/10.1016/S0021-9258(18)54740-2
    114. Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C (2012) Seed germination and vigor. Annual review of plant biology 63:507–533. DOI: 10.1146/annurev-arplant-042811-105550
    115. Ratajczak E, Małecka A, Bagniewska-Zadworna A, Kalemba EM (2015) The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.)seeds. Journal of Plant Physiology 174:147–156. DOI: https://doi.org/10.1016/j.jplph.2014.08.021
    116. Reybier K, Ayala S, Alies B, Rodrigues JV, Bustos Rodriguez S, La Penna, Collin F, Gomes CM, Hureau C, Faller P (2016) Free Superoxide is an Intermediate in the Production of H2O2 by Copper(I)-Abeta Peptide and O2. Angewandte Chemie International Edition 55:1085–1089. DOI: 10.1002/anie.201508597
    117. Rigo A, Stevanato R, Finazzi-Agro A, Rotilio G (1977) An attempt to evaluate the rate of the Haber-Weiss reaction by using OH radical scavengers. FEBS Letter 80:130–132. DOI: 10.1016/0014-5793(77)80422-5
    118. Sandalio LM, Fernandez VM,Ruperez FL, Del Rio LA (1988) Superoxide free radicals are produced in glyoxysomes. Plant Physiology 87:1–4 DOI: 10.1038/sj.embor.7400311
    119. Sarath G, Hou G, Baird LM, Mitchell RB ( 2007) Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C(4)-grasses. Planta 226:697–708. DOI: 10.1007/s00425-007-0517-z
    120. Schmidt HM, Kelley EE, Straub AC (2019) The impact of xanthine oxidase (XO) on hemolytic diseases. Redox Biology 21:101072. DOI: 10.1016/j.redox.2018.101072
    121. Schoneich C (2000) Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. Journal of pharmaceutical and biomedical analysis 21:1093–1097. DOI: 10.1016/s0731-7085(99)00182-x
    122. Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828. DOI: 10.1007/s00425-001-0699-8
    123. Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiology 125:1591–1602 DOI: https://doi.org/10.1104/pp.125.4.1591
    124. Schopfer P, Plachy, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiology 125:1591–1602. DOI: 10.1104/pp.125.4.1591
    125. SchroderM,Kaufman, RJ (2005) ER stress and the unfolded protein response. Mutation Research 569:29–63. DOI: 10.1016/j.mrfmmm.2004.06.056
    126. Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cellular and Molecular Life Sciences 73:79–94. DOI: 10.1007/s00018-015-2052-6
    127. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany 2012:26. DOI:https://doi.org/10.1155/2012/217037
    128. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules (Basel, Switzerland) 24(8):1583 DOI: 10.3390/molecules24081583
    129. Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan D , Prasad, SM (2016) Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes. Frontiers in Plant Science 7: 1299. DOI:https://doi.org/10.3389/fpls.2016.01299
    130. Spinks JWT, Woods RJ (1990) Water and inorganic aqueous systems In Introduction to Radiation Chemistry. John Wiley & Sons Inc. 22:243–313.
    131. Stacey MG, Osawa H, Patel A, Gassmann W , Stacey G (2006) Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223:291-305. DOI: 10.1007/s00425-005-0087-x
    132. Stanley BA, Sivakumaran V, Shi S, McDonald I , Lloyd D, Watson WH, Aon MA, Paolocci N (2011) Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria. The Journal of biological chemistry 286:33669–33677. DOI: 10.1074/jbc.M111.284612
    133. Thomas JK (1963) The rate constants for H atom reactions in aqueous solutions. Journal of Physical Chemistry 67:2593–2595. DOI:https://doi.org/10.1021/j100806a022
    134. Usuda N, ReddyMK, Hashimoto T, Rao MS, Reddy JK (1988) “Tissue specificity and species differences in the distribution of urate oxidase in peroxisomes,” Laboratory Investigation, vol. 58, no. 1, pp. 100–111
    135. Vasquez-Vivar J, Denicola A, Radi R , Augusto O (1997) Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion. Chemical research in toxicology 10:786–794. DOI: 10.1021/tx970031g
    136. Vasquez-Vivar J,Kalyanaraman B, Kennedy MC(2000) Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. Journal of Biological Chemistry, 275:14064–14069. DOI:https://doi.org/10.1074/jbc.275.19.14064
    137. Vignais PV (2002) The superoxide-generating NADPH oxidase: Structural aspects and activation mechanism. Cellular and Molecular Life Sciences 59:1428–1459. DOI: 10.1007/s00018-002-8520-9
    138. Von Sonntag C (1987) The Chemical Basis of Radiation Biology. Journal of Photochemistry and Photobiology B-biology 3 (1989): 465. DOI:10.1016/1011-1344(89)80053-3
    139. Von Sonntag C (1990) Free-radical reactions involving thiols and disulphides. In Sulfur-Centered Reactive Intermediates in Chemistry and Biology 197:359–366. DOI: https://doi.org/10.1007/978-1-4684-5874-9_31
    140. Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–151. DOI: 10.1105/tpc.001768
    141. Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant physiology 144:1240–1246. DOI: 10.1104/pp.107.100370
    142. Whatley SA, Curti D, Gupta FD (1998) Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients. Molecular Psychiatry 3:27–237. DOI: 10.1038/sj.mp.4000375
    143. Wigoda N, Ben-Nissan G, Granot D, Schwartz A, Weiss D (2006) The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity.The Plant journal : for cell and molecular biology 48:796–805. DOI:10.1111/j.1365-313X.2006.02917.x
    144. WinterbournCC , Hampton , Thiol MB (2008) chemistry and specificity in redox signaling. Free radical biology & medicine 45:549–561. DOI: 10.1016/j.freeradbiomed.2008.05.004
    145. Wojtyla L, Garnczarska M, Zalewski T, Bednarski W, Ratajczak L, Jurga S (2006) A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. Journal of plant physiology 163:1207–1220. DOI: 10.1016/j.jplph.2008.04.016
    146. Xia Q, Ponnaiah M, Cueff G, Rajjou L, Prodhomme D , Gibon Y (2018) Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. Plant science: an international journal of experimental plant biology 269:118–125 DOI: 10.1016/j.plantsci.2018.01.014
    147. Yin H, Havrilla M, Gao L, Morrow JD , Porter NA (2003) Mechanisms for the formation of isoprostaneendoperoxides from arachidonic acid. “Dioxetane” intermediate versus beta-fragmentation of peroxyl radicals. The Journal of biological chemistry 278:16720–16725. DOI:https://doi.org/10.1074/jbc.M300604200
    148. Zana M, Péterfi Z, Kovács HA (2018) Interaction between p22phox and Nox4 in the endoplasmic reticulum suggests a unique mechanism of NADPH oxidase complex formation. Free Radical Biology & Medicine 116:41–49. DOI:https://doi.org/10.1161/01.ATV.0000112024.13727.2c
    149. Zhang L, Yu L, Yu CA (1998) Generation of superoxide anion by succinate-cytochromec reductase from bovine heart mitochondria. Journal of Biological Chemistry 273:33972–33976 DOI: 10.1074/jbc.273.51.33972
    150. Zhou X, Zhuang Z, Wang W, He L, Wu H, Cao Y, Pan F, Zhao J, Hu Z, Sekhar C (2016) OGG1 is essential in oxidative stress induced DNA demethylation. Cellular Signaling. 28:1163–1171. DOI: 10.1016/j.cellsig.2016.05.021
    151. Zito E (2015) ERO1: a protein disulfide oxidase and H2O2 producer. Free Radical Biology & Medicine 83:299–304. DOI: https://doi.org/10.1016/j.freeradbiomed.2015.01.011

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Malque Publishing

How to cite

Sarangi, A., Samal, N., Das, M., & Nayak, G. C. (2023). Reactive oxygen species and its effect on germination of seeds. Multidisciplinary Reviews, 7(1), 2024001. https://doi.org/10.31893/multirev.2024001
  • Article viewed - 107
  • PDF downloaded - 45