• Abstract

    This study aimed to carry out a systematic review and meta-analysis of studies that measured the blood pressure (BP) and body mass (BM) of the Wistar (WIS), Wistar Kyoto (WKY) and spontaneously hypertensive rat (SHR) strains. The methods followed the criteria established by the PRISMA guidelines. A systematic search in PubMed, Web of Science and EMBASE was performed. After analysis, 83 studies were included for systematic review, and of those, 74 were applicable for BP meta-analysis and 39 for BM meta-analysis. The SHR had higher BP compared to control strains, while WKY had higher systolic BP compared to WIS. The WIS are heavier, followed by the WKY and the SHR. The WIS and WKY strains exhibit similarities and differences, and the choice of the strain to be used as the SHR control requires a deep analysis. However, our results support this theory that both strains can be used as SHR controls.

  • References

    1. Aiello, E. A., Villa-Abrille, M. C., Escudero, E. M., Portiansky, E. L., Perez, N. G., de Hurtado, M. C., et al. (2004). Myocardial hypertrophy of normotensive Wistar-Kyoto rats. Am J Physiol Heart Circ Physiol, 286(4), H1229-1235.
    2. Akemi Sato, M., Vanderlei Menani, J., Ubriaco Lopes, O., & Colombari, E. (2001). Lesions of the commissural nucleus of the solitary tract reduce arterial pressure in spontaneously hypertensive rats. Hypertension, 38(3 Pt 2), 560-564.
    3. Alexander, D., Gardner, J. P., Tomonari, H., Fine, B. P., & Aviv, A. (1990). Lower Na(+)-H+ antiport activity in vascular smooth muscle cells of Wistar-Kyoto rats than spontaneously hypertensive and Wistar rats. J Hypertens, 8(9), 867-871.
    4. Alexander, N., Hinshaw, L. B., & Drury, D. R. (1954). Development of a strain of spontaneously hypertensive rabbits. Proc Soc Exp Biol Med, 86(4), 855-858.
    5. Altura, B. M., Carella, A., & Altura, B. T. (1980). Magnesium ions control prostaglandin reactivity of venous smooth muscle from spontaneously hypertensive rats. Prostaglandins Med, 4(4), 255-261.
    6. Atanur, S. S., Diaz, A. G., Maratou, K., Sarkis, A., Rotival, M., Game, L., et al. (2013). Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell, 154(3), 691-703.
    7. Bailey, D. W. (1971). Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation, 11(3), 325-327.
    8. Belichard, P., Pruneau, D., & Rochette, L. (1988). Influence of spontaneous hypertension and cardiac hypertrophy on the severity of ischemic arrhythmias in the rat. Basic Res Cardiol, 83(5), 560-566.
    9. Bian, K., & Bukoski, R. D. (1995). Myofilament calcium sensitivity of normotensive and hypertensive resistance arteries. Hypertension, 25(1), 110-116.
    10. Bing, O. H., Brooks, W. W., Robinson, K. G., Slawsky, M. T., Hayes, J. A., Litwin, S. E., et al. (1995). The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. J Mol Cell Cardiol, 27(1), 383-396.
    11. Bizot, J. C., Chenault, N., Houze, B., Herpin, A., David, S., Pothion, S., et al. (2007). Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology (Berl), 193(2), 215-223.
    12. Blume, A., Lebrun, C. J., Herdegen, T., Bravo, R., Linz, W., Mollenhoff, E., et al. (1997). Increased brain transcription factor expression by angiotensin in genetic hypertension. Hypertension, 29(2), 592-598.
    13. Boluyt, M. O., Bing, O. H., & Lakatta, E. G. (1995). The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Eur Heart J, 16 Suppl N, 19-30.
    14. Borges, A. C., Feres, T., Vianna, L. M., & Paiva, T. B. (2002). Cholecalciferol treatment restores the relaxant responses of spontaneously hypertensive rat arteries to bradykinin. Pathophysiology, 8(4), 263-268.
    15. Boring, E. G. (1954). The nature and history of experimental control. Am J Psychol, 67(4), 573-589.
    16. Borko, H. (1968). Information Science: What Is It? American Documentation., 3-5.
    17. Borkowski, K. R., & Quinn, P. (1983). Validation of indirect systolic blood pressure measurement in ether anaesthetised rats. J Auton Pharmacol, 3(3), 157-160.
    18. Boylan, J. W., Van Liew, J. B., & Feig, P. U. (1991). Inverse changes in erythroid cell volume and number regulate the hematocrit in newborn genetically hypertensive rats. Proc Natl Acad Sci U S A, 88(21), 9848-9852.
    19. Brace, L. R., Kraev, I., Rostron, C. L., Stewart, M. G., Overton, P. G., & Dommett, E. J. (2015). Auditory responses in a rodent model of Attention Deficit Hyperactivity Disorder. Brain Res, 1629, 10-25.
    20. Brooksby, P., Levi, A. J., & Jones, J. V. (1993). Investigation of the mechanisms underlying the increased contraction of hypertrophied ventricular myocytes isolated from the spontaneously hypertensive rat. Cardiovasc Res, 27(7), 1268-1277.
    21. Bueno, V., Palos, M., Ronchi, F. A., Andrade, M. C., Ginoza, M., & Casarini, D. E. (2004). N-Domain angiotensin I-converting enzyme expression in renal artery of Wistar, Wistar Kyoto, and spontaneously hypertensive rats. Transplant Proc, 36(4), 1001-1003.
    22. Casellas, D., Bouriquet, N., Artuso, A., Walcott, B., & Moore, L. C. (2000). New method for imaging innervation of the renal preglomerular vasculature. Alterations in hypertensive rats. Microcirculation, 7(6 Pt 1), 429-437.
    23. Castello-Ruiz, M., Torregrosa, G., Burguete, M. C., Salom, J. B., Gil, J. V., Miranda, F. J., et al. (2011). Soy-derived phytoestrogens as preventive and acute neuroprotectors in experimental ischemic stroke: influence of rat strain. Phytomedicine, 18(6), 513-515.
    24. Cohen, J. (1988 ). Statistical Power Analysis for the Behavioral Sciences. : Lawrence Earlbaum Associates.
    25. Collins, H. L., Loka, A. M., & DiCarlo, S. E. (2005). Daily exercise-induced cardioprotection is associated with changes in calcium regulatory proteins in hypertensive rats. American Journal of Physiology-Heart and Circulatory Physiology, 288, H532–H540.
    26. Collis, M. G., de May, C., & Vanhoutte, P. M. (1979). Enhanced release of noradrenaline in the kidney of the young spontaneously hypertensive rat. Clin Sci (Lond), 57 Suppl 5, 233s-234s.
    27. Coskinas, E., & Price, J. M. (1987). Length-dependent sensitivity of vascular smooth muscle in normotensive and hypertensive animals. Am J Physiol, 253(2 Pt 2), H402-411.
    28. Cox, R. H. (1979). Comparison of arterial wall mechanics in normotensive and spontaneously hypertensive rats. Am J Physiol, 237(2), H159-167.
    29. Dalle Lucca, S. L., Dalle Lucca, J. J., Borges, A. C., Ihara, S. S., & Paiva, T. B. (2000). Abnormal proliferative response of the carotid artery of spontaneously hypertensive rats after angioplasty may be related to the depolarized state of its smooth muscle cells. Braz J Med Biol Res, 33(8), 919-927.
    30. David-Dufilho, M., Pernollet, M. G., Morris, M., Astarie-Dekequer, C., & Devynck, M. A. (1994). Erythrocyte Ca2+ handling in the spontaneously hypertensive rat, effect of vanadate ions. Life Sci, 54(4), 267-274.
    31. de Rezende, L. M. T., Brito, L. C., Moura, A. G., Costa, A., Leal, T. F., Favarato, E. S., et al. (2021). Core temperature circadian rhythm across aging in Spontaneously Hypertensive Rats. J Therm Biol, 97, 102807.
    32. Dela Pena, I., Dela Pena, I. J., de la Pena, J. B., Kim, H. J., Shin, C. Y., Han, D. H., et al. (2017). Methylphenidate and Atomoxetine-Responsive Prefrontal Cortical Genetic Overlaps in "Impulsive" SHR/NCrl and Wistar Rats. Behav Genet, 47(5), 564-580.
    33. Deschepper, C. F., Picard, S., Thibault, G., Touyz, R., & Rouleau, J. L. (2002). Characterization of myocardium, isolated cardiomyocytes, and blood pressure in WKHA and WKY rats. Am J Physiol Heart Circ Physiol, 282(1), H149-155.
    34. Docherty, J. R., & Warnock, P. (1986). Reduced alpha 1-adrenoreceptor mediated responsiveness in vas deferens from spontaneously hypertensive rats. J Auton Pharmacol, 6(4), 319-322.
    35. Doggrell, S. A., & Brown, L. (1998). Rat models of hypertension, cardiac hypertrophy and failure. Cardiovascular Research, 39(1), 89-105.
    36. Dommett, E. J., & Rostron, C. L. (2011). Abnormal air righting behaviour in the spontaneously hypertensive rat model of ADHD. Exp Brain Res, 215(1), 45-52.
    37. Dommett, E. J., & Rostron, C. L. (2013). Appetitive and consummative responding for liquid sucrose in the spontaneously hypertensive rat model of attention deficit hyperactivity disorder. Behav Brain Res, 238, 232-242.
    38. Doris, P. A. (2017). Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiol Genomics, 49(11), 601-617.
    39. Dumont, M., & Lemaire, S. (1995). Inhibitory effects of dynorphin-A on norepinephrine uptake by cardiac synaptosomal-mitochondrial fractions. J Cardiovasc Pharmacol, 25(4), 518-523.
    40. Dumont, M., Sabourin, L., & Lemaire, S. (1990). Alterations of heart dynorphin-A in the development of spontaneously hypertensive rats. Neuropeptides, 15(1), 43-48.
    41. Dunn, F. G., Pfeffer, M. A., & Frohlich, E. D. (1978). ECG alterations with progressive left ventricular hypertrophy in spontaneous hypertension. Clin Exp Hypertens, 1(1), 67-86.
    42. Eichelman, B., Dejong, W., & Williams, R. B. (1973). Aggressive behavior in hypertensive and normotensive rat strains. Physiol Behav, 10(2), 301-304.
    43. Fagundes, D. J., & Taha, M. O. (2004). Modelo animal de doença: critérios de escolha e espécies de animais de uso corrente. Acta Cirúrgica Brasileira, 19(1), 59-65.
    44. Farman, N., & Bonvalet, J. P. (1985). Aldosterone binding in isolated tubules. IV. Autoradiography along the nephron of the spontaneously hypertensive rat. Am J Physiol, 249(1 Pt 2), F99-106.
    45. Feig, P. U., D'Occhio, M. A., & Boylan, J. W. (1987). Lymphocyte membrane sodium-proton exchange in spontaneously hypertensive rats. Hypertension, 9(3), 282-288.
    46. Felten, S. Y., Weyhenmeyer, J. A., & Felten, D. L. (1984). Norepinephrine and serotonin in central autonomic nuclei in the spontaneously hypertensive rat and two normotensive control rats. Brain Res Bull, 13(3), 437-441.
    47. Feng, J. J., & Arendshorst, W. J. (1996). Enhanced renal vasoconstriction induced by vasopressin in SHR is mediated by V1 receptors. Am J Physiol, 271(2 Pt 2), F304-313.
    48. Feres, T., Borges, A. C., Silva, E. G., Paiva, A. C., & Paiva, T. B. (1998). Impaired function of alpha-2 adrenoceptors in smooth muscle of mesenteric arteries from spontaneously hypertensive rats. Br J Pharmacol, 125(6), 1144-1149.
    49. Feres, T., Vianna, L. M., Paiva, A. C., & Paiva, T. B. (1992). Effect of treatment with vitamin D3 on the responses of the duodenum of spontaneously hypertensive rats to bradykinin and to potassium. Br J Pharmacol, 105(4), 881-884.
    50. Ferreira, L. M., Hochman, B., & Barbosa, M. V. J. (2005). Modelos experimentais em pesquisa. Acta Cirúrgica Brasileira, 20(2), 28-34.
    51. Findlay, A. L. (1996). The effect of losartan on drinking and NaCl intake in the rat in response to hyperosmotic and hypovolaemic stimuli: effect of route of administration and strain of rat. Regul Pept, 66(1-2), 95-100.
    52. Fox, G. B., Pan, J. B., Esbenshade, T. A., Bennani, Y. L., Black, L. A., Faghih, R., et al. (2002). Effects of histamine H(3) receptor ligands GT-2331 and ciproxifan in a repeated acquisition avoidance response in the spontaneously hypertensive rat pup. Behav Brain Res, 131(1-2), 151-161.
    53. Frohlich, E. D., & Pfeffer, M. A. (1975). Adrenergic mechanisms in human hypertension and in spontaneously hypertensive rats. Clin Sci Mol Med Suppl, 2, 225s-238s.
    54. Garcia, R., Gauquelin, G., Thibault, G., Cantin, M., & Schiffrin, E. L. (1989). Glomerular atrial natriuretic factor receptors in spontaneously hypertensive rats. Hypertension, 13(6 Pt 1), 567-574.
    55. Gattone, V. H., 2nd. (1986). Body weight of the spontaneously hypertensive rat during the suckling and weanling periods. Jpn Heart J, 27(6), 881-884.
    56. Gattu, M., Pauly, J. R., Boss, K. L., Summers, J. B., & Buccafusco, J. J. (1997). Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. I. Brain Res, 771(1), 89-103.
    57. Gordon, C. J., Phillips, P. M., & Johnstone, A. F. (2016). Impact of genetic strain on body fat loss, food consumption, metabolism, ventilation, and motor activity in free running female rats. Physiol Behav, 153, 56-63.
    58. Grisk, O., Exner, J., Schmidt, M., Wacker, S., Werner, M., & Honig, A. (1995). Cardiorespiratory responses to acute hypoxia and hyperoxia in adult and neonatal spontaneously hypertensive and normotensive rats. Clin Exp Hypertens, 17(7), 1025-1047.
    59. Gros, R., Chorazyczewski, J., Meek, M. D., Benovic, J. L., Ferguson, S. S., & Feldman, R. D. (2000). G-Protein-coupled receptor kinase activity in hypertension: increased vascular and lymphocyte G-protein receptor kinase-2 protein expression. Hypertension, 35(1 Pt 1), 38-42.
    60. Grunblatt, E., Bartl, J., Iuhos, D. I., Knezovic, A., Trkulja, V., Riederer, P., et al. (2015). Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction. J Mol Psychiatry, 3(1), 6.
    61. Haack, D. W., Schaffer, J. J., & Simpson, J. G. (1980). Comparisons of cutaneous microvessels from spontaneously hypertensive, normotensive Wistar-Kyoto, and normal Wistar rats. Proc Soc Exp Biol Med, 164(4), 453-458.
    62. Hancock, J. C., & Lindsay, G. W. (2000). Enhanced ganglionic responses to substance P in spontaneously hypertensive rats. Peptides, 21(4), 535-541.
    63. Hard, E., Carlsson, S. G., Jern, S., Larsson, K., Lindh, A. S., & Svensson, L. (1985). Behavioral reactivity in spontaneously hypertensive rats. Physiol Behav, 35(4), 487-492.
    64. Harris, E. L., Grigor, M. R., & Millar, J. A. (1990). Differences in mitogenic responses to angiotensin II, calf serum and phorbol ester in vascular smooth muscle cells from two strains of genetically hypertensive rat. Biochem Biophys Res Commun, 170(3), 1249-1255.
    65. Harvey, R. C., Jordan, C. J., Tassin, D. H., Moody, K. R., Dwoskin, L. P., & Kantak, K. M. (2013). Performance on a strategy set shifting task during adolescence in a genetic model of attention deficit/hyperactivity disorder: methylphenidate vs. atomoxetine treatments. Behav Brain Res, 244, 38-47.
    66. Harvey, R. C., Sen, S., Deaciuc, A., Dwoskin, L. P., & Kantak, K. M. (2011). Methylphenidate treatment in adolescent rats with an attention deficit/hyperactivity disorder phenotype: cocaine addiction vulnerability and dopamine transporter function. Neuropsychopharmacology, 36(4), 837-847.
    67. Hausler, A., Girard, J., Baumann, J. B., Ruch, W., & Otten, U. H. (1983). Long-term effects of betamethasone on blood pressure and hypothalamo-pituitary-adrenocortical function in spontaneously hypertensive and normotensive rats. Horm Res, 18(4), 191-197.
    68. Head, G. A., & de Jong, W. (1986). Differential blood pressure responses to intracisternal clonidine, alpha-methyldopa, and 6-hydroxydopamine in conscious normotensive and spontaneously hypertensive rats. J Cardiovasc Pharmacol, 8(4), 735-742.
    69. Herlitz, H., Lundin, S., Henning, M., Aurell, M., Karlberg, B. E., & Berglund, G. (1982). Hormonal pattern during development of hypertension in spontaneously hypertensive rats (SHR). Clin Exp Hypertens A, 4(6), 915-935.
    70. Herman, E., Knapton, A., Rosen, E., Zhang, J., Estis, J., Agee, S. J., et al. (2011). Baseline serum cardiac troponin I concentrations in Sprague-Dawley, spontaneous hypertensive, Wistar, Wistar-Kyoto, and Fisher rats as determined with an ultrasensitive immunoassay. Toxicol Pathol, 39(4), 653-663.
    71. Hilbert, P., Lindpaintner, K., Beckmann, J. S., Serikawa, T., Soubrier, F., Dubay, C., et al. (1991). Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature, 353(6344), 521-529.
    72. Hilgenfeldt, U., & Schott, R. (1987). Differences in pattern of plasma angiotensinogen in native and nephrectomized rats. Hypertension, 9(4), 339-344.
    73. Hill, J. C., Herbst, K., & Sanabria, F. (2012). Characterizing operant hyperactivity in the Spontaneously Hypertensive Rat. Behav Brain Funct, 8, 5.
    74. Hodgins, D. S., & Frohlich, E. D. (1978). Cardiac adenylate cyclase, cyclic nucleotide phosphodiesterase and lactate dehydrogenase in normotensive and spontaneously hypertensive rats. Biochem Pharmacol, 27(8), 1179-1185.
    75. Hopp, L., Khalil, F., Tamura, H., Kino, M., Searle, B. M., Tokushige, A., et al. (1986). Ouabain binding to cultured vascular smooth muscle cells of the spontaneously hypertensive rat. Am J Physiol, 250(6 Pt 1), C948-954.
    76. Huang, A., Sun, D., & Koller, A. (1993). Endothelial dysfunction augments myogenic arteriolar constriction in hypertension. Hypertension, 22(6), 913-921.
    77. Ibarra, M., Lopez-Guerrero, J. J., & Villalobos-Molina, R. (2001). The influence of chloroethylclonidine-induced contraction in isolated arteries of Wistar Kyoto rats: alpha1D- and alpha1A-adrenoceptors, protein kinase C, and calcium influx. Arch Med Res, 32(4), 258-262.
    78. Ibias, J., Daniels, C. W., Miguens, M., Pellon, R., & Sanabria, F. (2017). The Effect of Methylphenidate on the Microstructure of Schedule-Induced Polydipsia in an animal model of ADHD. Behav Brain Res, 333, 211-217.
    79. Ibias, J., Miguens, M., & Pellon, R. (2016). Effects of dopamine agents on a schedule-induced polydipsia procedure in the spontaneously hypertensive rat and in Wistar control rats. J Psychopharmacol, 30(9), 856-866.
    80. Ibias, J., & Pellon, R. (2011). Schedule-induced polydipsia in the spontaneously hypertensive rat and its relation to impulsive behaviour. Behav Brain Res, 223(1), 58-69.
    81. Ibias, J., Pellon, R., & Sanabria, F. (2015). A microstructural analysis of schedule-induced polydipsia reveals incentive-induced hyperactivity in an animal model of ADHD. Behav Brain Res, 278, 417-423.
    82. Jacob, H. J., Lindpaintner, K., Lincoln, S. E., Kusumi, K., Bunker, R. K., Mao, Y. P., et al. (1991). Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell, 67(1), 213-224.
    83. Johnson, E. M., Jr., & Macia, R. A. (1979). Unique resistance to guanethidine-induced chemical sympathectomy of spontaneously hypertensive rats: a resistance overcome by treatment with antibody to nerve growth factor. Circ Res, 45(2), 243-249.
    84. Jordan, C. J., Harvey, R. C., Baskin, B. B., Dwoskin, L. P., & Kantak, K. M. (2014). Cocaine-seeking behavior in a genetic model of attention-deficit/hyperactivity disorder following adolescent methylphenidate or atomoxetine treatments. Drug Alcohol Depend, 140, 25-32.
    85. Jordan, C. J., Lemay, C., Dwoskin, L. P., & Kantak, K. M. (2016). Adolescent d-amphetamine treatment in a rodent model of attention deficit/hyperactivity disorder: impact on cocaine abuse vulnerability in adulthood. Psychopharmacology (Berl), 233(23-24), 3891-3903.
    86. Jordan, C. J., Taylor, D. M., Dwoskin, L. P., & Kantak, K. M. (2016). Adolescent D-amphetamine treatment in a rodent model of ADHD: Pro-cognitive effects in adolescence without an impact on cocaine cue reactivity in adulthood. Behav Brain Res, 297, 165-179.
    87. Kawabe, T., Iwasa, M., Kawabe, K., & Sapru, H. N. (2016). Attenuation of angiotensin type 2 receptor function in the rostral ventrolateral medullary pressor area of the spontaneously hypertensive rat. Clin Exp Hypertens, 38(2), 209-217.
    88. Kawasaki, H., Nuki, Y., Yamaga, N., Kurosaki, Y., & Taguchi, T. (2000). Decreased depressor response mediated by calcitonin gene-related peptide (CGRP)-containing vasodilator nerves to spinal cord stimulation and levels of CGRP mRNA of the dorsal root ganglia in spontaneously hypertensive rats. Hypertens Res, 23(6), 693-699.
    89. Kawasaki, H., Saito, A., & Takasaki, K. (1990). Changes in calcitonin gene-related peptide (CGRP)-containing vasodilator nerve activity in hypertension. Brain Res, 518(1-2), 303-307.
    90. Khalil, F., Fine, B., Kuriyama, S., Hatori, N., Nakamura, A., Nakamura, M., et al. (1987). Increased atrial natriuretic factor receptor density in cultured vascular smooth muscle cells of the spontaneously hypertensive rat. Clin Exp Hypertens A, 9(4), 741-752.
    91. Kino, M., Tamura, H., Hopp, L., Tokushige, A., Searle, B. M., & Aviv, A. (1985). The effect of melittin on Na+ and Rb+ transport in cultured skin fibroblasts of the spontaneously hypertensive rat. Clin Exp Hypertens A, 7(9), 1283-1299.
    92. Kitami, Y., Fukuoka, T., Hiwada, K., & Inagami, T. (1999). A high level of CCAAT-enhancer binding protein-delta expression is a major determinant for markedly elevated differential gene expression of the platelet-derived growth factor-alpha receptor in vascular smooth muscle cells of genetically hypertensive rats. Circ Res, 84(1), 64-73.
    93. Kitamura, Y., Ishise, S., Pegram, B. L., Kawamura, H., & Frohlich, E. D. (1981). Hemodynamic responses to bilateral lesions of the nucleus tractus solitarii in spontaneously hypertensive and normotensive rats. Hypertension, 3(3), 362-366.
    94. Klee, A., Vater, S., Schmid-Schonbein, G. W., & Seiffge, D. (1993). Evidence from comparative investigations that impaired platelet activation is not specific for stroke-prone spontaneously hypertensive rats. Stroke, 24(10), 1528-1533.
    95. Kodavanti, U. P., Ledbetter, A. D., Thomas, R. F., Richards, J. E., Ward, W. O., Schladweiler, M. C., et al. (2015). Variability in ozone-induced pulmonary injury and inflammation in healthy and cardiovascular-compromised rat models. Inhal Toxicol, 27 Suppl 1, 39-53.
    96. Kreutz, R., Struk, B., Rubattu, S., Hubner, N., Szpirer, J., Szpirer, C., et al. (1997). Role of the alpha-, beta-, and gamma-subunits of epithelial sodium channel in a model of polygenic hypertension. Hypertension, 29(1 Pt 1), 131-136.
    97. Krukoff, T. L., & Calaresu, F. R. (1984). Cytochrome oxidase activity in the hypothalamus of SHR and normotensive rats before and after fasting. Brain Res, 322(1), 75-82.
    98. Kubo, T., & Hagiwara, Y. (2006). Enhanced central hypertonic saline-induced activation of angiotensin II-sensitive neurons in the anterior hypothalamic area of spontaneously hypertensive and Dahl S rats. Brain Res Bull, 68(5), 335-340.
    99. Kunes, J., Pang, S. C., Cantin, M., Genest, J., & Hamet, P. (1987). Cardiac and renal hyperplasia in newborn spontaneously hypertensive rats. Clin Sci (Lond), 72(3), 271-275.
    100. Kurtz, T. W., Montano, M., Chan, L., & Kabra, P. (1989). Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: implications for research with the spontaneously hypertensive rat. Hypertension, 13(2), 188-192.
    101. Kurtz, T. W., & Morris, R. C., Jr. (1987). Biological variability in Wistar-Kyoto rats. Implications for research with the spontaneously hypertensive rat. Hypertension, 10(1), 127-131.
    102. Lang, D. J., & Johns, B. L. (1987). Venule distension properties in Wistar, Wistar-Kyoto, and spontaneously hypertensive rats. Am J Physiol, 252(4 Pt 2), H714-720.
    103. Langen, B., & Dost, R. (2011). Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists. Atten Defic Hyperact Disord, 3(1), 1-12.
    104. Lariviere, R., Baribeau, J., St-Louis, J., & Schiffrin, E. L. (1989). Vasopressin receptors and inositol trisphosphate production in blood vessels of spontaneously hypertensive rats. Can J Physiol Pharmacol, 67(3), 232-239.
    105. Leyssac, P. P., Jensen, P. K., & Holstein-Rathlou, N. H. (1986). A study of proximal tubular compliances in normotensive and spontaneously hypertensive rats, and the effect of anaesthesia on the compliance. Acta Physiol Scand, 126(3), 341-348.
    106. Loeb, A. L., & Bean, B. L. (1986). Antihypertensive drugs inhibit hypertension-associated aortic DNA synthesis in the rat. Hypertension, 8(12), 1135-1142.
    107. Lukacsko, P. (1983). Effect of arachidonic acid on the basal release of prostaglandins E2 and I2 by rat arteries during the development of hypertension. Clin Exp Hypertens A, 5(9), 1471-1483.
    108. Lukacsko, P., Messina, E. J., & Kaley, G. (1980). Reduced hypotensive action of arachidonic acid in the spontaneously hypertensive rat. Hypertension, 2(5), 657-663.
    109. Lundin, S., Herlitz, H., Hallback-Nordlander, M., Ricksten, S. E., Gothberg, G., & Berglund, G. (1982). Sodium balance during development of hypertension in the spontaneously hypertensive rat (SHR). Acta Physiol Scand, 115(3), 317-323.
    110. Magee, J. C., & Schofield, G. G. (1992). Neurotransmission through sympathetic ganglia of spontaneously hypertensive rats. Hypertension, 20(3), 367-373.
    111. Magee, J. C., & Schofield, G. G. (1994). Alterations of synaptic transmission in sympathetic ganglia of spontaneously hypertensive rats. Am J Physiol, 267(5 Pt 2), R1397-1407.
    112. Magnusson, A. M., & Meyerson, B. J. (1993). GABA-A agonist muscimol inhibits stimulated vasopressin release in the posterior pituitary of Sprague-Dawley, Wistar, Wistar-Kyoto and spontaneously hypertensive rats. Neuroendocrinology, 58(5), 519-524.
    113. Mamuya, W., Chobanian, A., & Brecher, P. (1992). Age-related changes in fibronectin expression in spontaneously hypertensive, Wistar-Kyoto, and Wistar rat hearts. Circ Res, 71(6), 1341-1350.
    114. Martin, J. R., & Quock, R. M. (1984). Pharmacological characterization of apomorphine-induced hypothermia in the spontaneously hypertensive rat. Life Sci, 35(9), 929-936.
    115. McLellan, A. R., Milligan, G., Houslay, M. D., & Connell, J. M. (1993). G-proteins in experimental hypertension: a study of spontaneously hypertensive rat myocardial and renal cortical plasma membranes. J Hypertens, 11(4), 365-372.
    116. Miasiro, N., Paiva, T. B., Pereira, C. C., & Shimuta, S. I. (1985). Reactivity to bradykinin and potassium of the isolated duodenum from rats with genetic and renal hypertension. Br J Pharmacol, 85(3), 639-646.
    117. Morano, I., Adler, K., Weismann, K., Knorr, A., Erdmann, E., & Bohm, M. (1993). Correlation of myosin heavy chain expression in the rat with cAMP in different models of hypertension-induced cardiac hypertrophy. J Mol Cell Cardiol, 25(4), 387-394.
    118. Morton, J. J., Beattie, E. C., Griffin, S. A., MacPherson, F., Lyall, F., & Russo, D. (1990). Vascular hypertrophy, renin and blood pressure in the young spontaneously hypertensive rat. Clin Sci (Lond), 79(5), 523-530.
    119. Mullins, M. M., & Banks, R. O. (1976). Age-related changes in Na+ excretion in saline-loaded spontaneously hypertensive rats. Am J Physiol, 231(5 Pt. 1), 1364-1370.
    120. Mullins, M. M., Kleinman, L. I., Russell, P. T., & Srivastava, L. S. (1982). Plasma aldosterone concentrations in neonatal spontaneously hypertensive rats. Life Sci, 31(24), 2751-2755.
    121. Nakamura, M., Nakamura, A., Fine, B., & Aviv, A. (1988). Blunted cGMP response to ANF in vascular smooth muscle cells of SHR. Am J Physiol, 255(5 Pt 1), C573-580.
    122. Nam, H., Clinton, S. M., Jackson, N. L., & Kerman, I. A. (2014). Learned helplessness and social avoidance in the Wistar-Kyoto rat. Front Behav Neurosci, 8, 109.
    123. Nickerson, P. A. (1976). The adrenal cortex in spontaneously hypertensive rats. A quantitative ultrastructural study. Am J Pathol, 84(3), 545-560.
    124. Nishiyama, K., Nishiyama, A., & Frohlich, E. D. (1976). Regional blood flow in normotensive and spontaneously hypertensive rats. Am J Physiol, 230(3), 691-698.
    125. Nordborg, C., & Johansson, B. B. (1980). Morphometric study on cerebral vessels in spontaneously hypertensive rats. Stroke, 11(3), 266-270.
    126. Novikov, A. M., & Novikov, D. A. (2013). Research methodology: From philosophy of science to research design. In T. F. group (Eds.)
    127. O'Donnell, A., & Volicer, L. (1981). Thermoregulation in spontaneously hypertensive rats: effects of antihypertensive treatments. Clin Exp Hypertens, 3(3), 555-567.
    128. Okamoto, K., & Aoki, K. (1963). Development of a strain of spontaneously hypertensive rats. Jpn Circ J, 27, 282-293.
    129. Okamoto, K., Tabei, R., Fukushima, M., Nosaka, S., & Yamori, Y. (1966). Further observations of the development of a strain of spontaneously hypertensive rats. Jpn Circ J, 30(6), 703-716.
    130. Oliveira, T. R., Lamy, M. T., De Paula, U. M., Guimaraes, L. L., Toledo, M. S., Takahashi, H. K., et al. (2009). Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes. Braz J Med Biol Res, 42(9), 844-853.
    131. Omran, A. R. (1971). The epidemiologic transition. A theory of the epidemiology of population change. Milbank Mem Fund Q, 49(4), 509-538.
    132. Orduna, V., Garcia, A., Menez, M., Hong, E., & Bouzas, A. (2008). Performance of spontaneously hypertensive rats in a peak-interval procedure with gaps. Behav Brain Res, 191(1), 72-76.
    133. Orduna, V., Hong, E., & Bouzas, A. (2007). Interval bisection in spontaneously hypertensive rats. Behav Processes, 74(1), 107-111.
    134. Orduna, V., Valencia-Torres, L., & Bouzas, A. (2009). DRL performance of spontaneously hypertensive rats: dissociation of timing and inhibition of responses. Behav Brain Res, 201(1), 158-165.
    135. Page, I. H. (1939). A Method for Producing Persistent Hypertension by Cellophane. Science, 89(2308), 273-274.
    136. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg, 88, 105906.
    137. Paré, W. (1989). "Behavioral Despair" Test Predicts Stress Ulcer in WKY Rats. Physiology & Behavior, 46, 483-487.
    138. Pare, W. P. (1989a). Stress ulcer and open-field behavior of spontaneously hypertensive, normotensive, and Wistar rats. Pavlov J Biol Sci, 24(2), 54-57.
    139. Pare, W. P. (1989b). Stress ulcer susceptibility and depression in Wistar Kyoto (WKY) rats. Physiol Behav, 46(6), 993-998.
    140. Percy, C. J., Brown, L., Power, D. A., Johnson, D. W., & Gobe, G. C. (2009). Obesity and hypertension have differing oxidant handling molecular pathways in age-related chronic kidney disease. Mech Ageing Dev, 130(3), 129-138.
    141. Perez, G. N., Petroff, M. V., & Mattiazzi, A. (1993). Rested-state contractions and rest potentiation in spontaneously hypertensive rats. Hypertension, 22(3), 306-314.
    142. Phelan, E. L., Eryetishir, I., & Smirk, F. H. (1962). Observations on the responses of rats with spontaneous hypertension and control rats to pressor drugs and to hexamethonium. Circ Res, 10, 817-824.
    143. Phelan, E. L., & Smirk, F. H. (1962). Cardiac hypertrophy in genetically hypertensive rats. The Journal of Pathology and Bacteriology, 80, 445-448.
    144. Picotti, G. B., Carruba, M. O., Ravazzani, C., Bondiolotti, G. P., & Da Prada, M. (1982). Plasma catecholamine concentrations in normotensive rats of different strains and in spontaneously hypertensive rats under basal conditions and during cold exposure. Life Sci, 31(19), 2137-2143.
    145. Pollock, D. M., & Arendshorst, W. J. (1991). Effect of acute renal denervation and ANF on renal function in adult spontaneously hypertensive rats. Am J Physiol, 261(4 Pt 2), R835-841.
    146. Postnov, Y. V., & Orlov, S. N. (1980). Evidence of altered calcium accumulation and calcium binding by the membranes of adipocytes in spontaneously hypertensive rats. Pflugers Arch, 385(1), 85-89.
    147. Preuss, H. G., & Goldin, H. (1983). Serum renotropic activity and renal growth in spontaneously hypertensive rats. Kidney Int, 23(4), 635-642.
    148. Preuss, H. G., Zein, M., MacArthy, P., Dipette, D., Sabnis, S., & Knapka, J. (1998). Sugar-induced blood pressure elevations over the lifespan of three substrains of Wistar rats. J Am Coll Nutr, 17(1), 36-47.
    149. Ribeiro, R. T., Afonso, R. A., & Macedo, M. P. (2007). Hepatic parasympathetic role in insulin resistance on an animal model of hypertension. Metabolism, 56(2), 227-233.
    150. Rodionov, I. M., Iarygin, V. N., Markov Kh, M., Pinelis, V. G., Lakgueva, F. K., Tarasova, O. S., et al. (1989). [Increased number of sympathetic neurons in the superior cervical ganglia of rats of SHR and Wistar-Kyoto strains as compared with Wistar rats]. Biull Eksp Biol Med, 108(11), 620-622.
    151. Rostron, C. L., Gaeta, V., Brace, L. R., & Dommett, E. J. (2017). Instrumental conditioning for food reinforcement in the spontaneously hypertensive rat model of attention deficit hyperactivity disorder. BMC Res Notes, 10(1), 525.
    152. Rowland, N. E., Li, B. H., Fregly, M. J., & Smith, G. C. (1995). Fos induced in brain of spontaneously hypertensive rats by angiotensin II and co-localization with AT-1 receptors. Brain Res, 675(1-2), 127-134.
    153. Rybnikovaa, E. A., Vetrovoia, O. V., & Zenkoa, M. Y. (2018). Comparative Characterization of Rat Strains (Wistar, Wistar–Kyoto, Sprague Dawley, Long Evans, LT, SHR, BD-IX) by Their Behavior, Hormonal Level and Antioxidant Status. Journal of Evolutionary Biochemistry and Physiology, 54(5), 374-382.
    154. Sagvolden, T., Pettersen, M. B., & Larsen, M. C. (1993). Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav, 54(6), 1047-1055.
    155. Sakamoto, K., Yonoki, Y., Fujioka, T., Matsumura, M., Mitsuta, Y., Sano, M., et al. (2006). Disappearance of glibenclamide-induced hypoglycemia in Wistar-Kyoto rats. Biol Pharm Bull, 29(3), 574-576.
    156. Saltzman, D., DeLano, F. A., & Schmid-Schonbein, G. W. (1992). The microvasculature in skeletal muscle. VI. Adrenergic innervation of arterioles in normotensive and spontaneously hypertensive rats. Microvasc Res, 44(3), 263-273.
    157. Sanada, L. S., Tavares, M. R., Neubern, M. C., Salgado, H. C., & Fazan, V. P. (2011). Can Wistar rats be used as the normotensive controls for nerve morphometry investigations in spontaneously hypertensive rats (SHR)? Acta Cir Bras, 26(6), 514-520.
    158. Sandow, S. L., Gzik, D. J., & Lee, R. M. (2009). Arterial internal elastic lamina holes: relationship to function? J Anat, 214(2), 258-266.
    159. Schiffrin, E. L., Parent, A., St Louis, J., Tremblay, J., Garcia, R., & Thibault, G. (1992). Vascular atrial natriuretic factor receptors in spontaneously hypertensive rats. Cardiovasc Res, 26(9), 857-864.
    160. Schini, V. B., Kim, N. D., & Vanhoutte, P. M. (1991). The basal and stimulated release of EDRF inhibits the contractions evoked by endothelin-1 and endothelin-3 in aortae of normotensive and spontaneously hypertensive rats. J Cardiovasc Pharmacol, 17 Suppl 7, S267-271.
    161. Shcherbin, Y. I., & Tsyrlin, V. A. (2004). Comparison of the somatosympathetic reflex in normotensive and spontaneously hypertensive rats. Neurosci Behav Physiol, 34(6), 563-567.
    162. Silva, E. G., Frediani-Neto, E., Ferreira, A. T., Paiva, A. C., & Paiva, T. B. (1994). Role of Ca(+)-dependent K-channels in the membrane potential and contractility of aorta from spontaneously hypertensive rats. Br J Pharmacol, 113(3), 1022-1028.
    163. Sitsen, J. M. A., Nijkamp, F. P., & Jong, W. (1987). Differential Sensitivity to Morphine in Spontaneously Hypertensive and Normotensive Wistar-Kyoto and Wistar Rats. Clin. And expert.-theory and practice, 9(7), 1159-1171.
    164. Sladek, J. R., Jr., Davis, B. J., & Sladek, C. D. (1986). Localization of vasopressin-neurophysin and norepinephrine in the supraoptic nucleus of spontaneously hypertensive rats. Brain Res, 365(2), 293-304.
    165. Smirk, F. H., & Hall, W. H. (1958). Inherited hypertension in rats. Nature, 182(4637), 727-728.
    166. Soderpalm, B. (1989). The SHR exhibits less "anxiety" but increased sensitivity to the anticonflict effect of clonidine compared to normotensive controls. Pharmacol Toxicol, 65(5), 381-386.
    167. Somkuwar, S. S., Darna, M., Kantak, K. M., & Dwoskin, L. P. (2013). Adolescence methylphenidate treatment in a rodent model of attention deficit/hyperactivity disorder: dopamine transporter function and cellular distribution in adulthood. Biochem Pharmacol, 86(2), 309-316.
    168. Somkuwar, S. S., Jordan, C. J., Kantak, K. M., & Dwoskin, L. P. (2013). Adolescent atomoxetine treatment in a rodent model of ADHD: effects on cocaine self-administration and dopamine transporters in frontostriatal regions. Neuropsychopharmacology, 38(13), 2588-2597.
    169. Somkuwar, S. S., Kantak, K. M., Bardo, M. T., & Dwoskin, L. P. (2016). Adolescent methylphenidate treatment differentially alters adult impulsivity and hyperactivity in the Spontaneously Hypertensive Rat model of ADHD. Pharmacol Biochem Behav, 141, 66-77.
    170. Somkuwar, S. S., Kantak, K. M., & Dwoskin, L. P. (2015). Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of attention deficit hyperactivity disorder. J Neurosci Methods, 252, 55-63.
    171. Sonntag, M., Schalike, W., & Brattstrom, A. (1990). Cardiovascular effects of vasopressin micro-injections into the nucleus tractus solitarii in normotensive and hypertensive rats. J Hypertens, 8(5), 417-421.
    172. Stein, B. A., Katzeff, I., Norton, G., De Wet, G., & Rosendorff, C. (1990). Differential size distribution of atrial dense granules in spontaneously hypertensive, Wistar-Kyoto and Wistar rats. Acta Anat (Basel), 137(4), 331-335.
    173. Tabrizchi, R., & Triggle, C. R. (1992). Actions of L- and D-arginine and NG-monomethyl-L-arginine on the blood pressure of pithed normotensive and spontaneously hypertensive rats. Clin Exp Hypertens A, 14(3), 527-546.
    174. Takahashi, M., Inoue, A., Takeda, K., Okajima, H., Sasakim, S., Yoshimuram, M., et al. (1983). Augmented Central Cholinergic Mechanisms in Spontaneously Hypertensive Rats. Japanese Heart Journal.
    175. Tamura, H., Hopp, L., Kino, M., Tokushige, A., Searle, B. M., Khalil, F., et al. (1986). Na+-K+ regulation in cultured vascular smooth muscle cell of the spontaneously hypertensive rat. Am J Physiol, 250(6 Pt 1), C939-947.
    176. Tanigawa, K., Inoue, Y., & Tamura, K. (1999). Insulin secretion and biosynthesis by the perfused pancreas of spontaneously hypertensive rats. Metabolism, 48(1), 3-6.
    177. Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions.
    178. . Psychological Review, 8, 247-261.
    179. Tobia, A. J., Lee, J. Y., & Walsh, G. M. (1974). Regional blood flow and vascular resistance in the spontaneously hypertensive rat. Cardiovasc Res, 8(6), 758-762.
    180. Toivanen, A., Merilahti-Palo, R., Gripenberg, C., Lahesmaa-Rantala, R., Soderstrom, K. O., & Jaakkola, U. M. (1986). Yersinia-associated arthritis in the rat: experimental model for human reactive arthritis? Acta Pathol Microbiol Immunol Scand C, 94(6), 261-269.
    181. Tokushige, A., Kino, M., Tamura, H., Hopp, L., Searle, B. M., & Aviv, A. (1986). Bumetanide-sensitive sodium-22 transport in vascular smooth muscle cell of the spontaneously hypertensive rat. Hypertension, 8(5), 379-385.
    182. Touyz, R. M., & Schiffrin, E. L. (1997). Role of calcium influx and intracellular calcium stores in angiotensin II-mediated calcium hyper-responsiveness in smooth muscle from spontaneously hypertensive rats. J Hypertens, 15(12 Pt 1), 1431-1439.
    183. Touyz, R. M., Tolloczko, B., & Schiffrin, E. L. (1994). Mesenteric vascular smooth muscle cells from spontaneously hypertensive rats display increased calcium responses to angiotensin II but not to endothelin-1. J Hypertens, 12(6), 663-673.
    184. Touyz, R. M., Tolloczko, B., & Schiffrin, E. L. (1995). Blunted attenuation of angiotensin II-mediated Ca2+ transients by insulin in cultured unpassaged vascular smooth muscle cells from spontaneously hypertensive rats. Am J Hypertens, 8(2), 104-112.
    185. Tran, E. D., DeLano, F. A., & Schmid-Schonbein, G. W. (2010). Enhanced matrix metalloproteinase activity in the spontaneously hypertensive rat: VEGFR-2 cleavage, endothelial apoptosis, and capillary rarefaction. J Vasc Res, 47(5), 423-431.
    186. Tremblay, J., Huot, C., Willenbrock, R. C., Bayard, F., Gossard, F., Fujio, N., et al. (1993). Increased cyclic guanosine monophosphate production and overexpression of atrial natriuretic peptide A-receptor mRNA in spontaneously hypertensive rats. J Clin Invest, 92(5), 2499-2508.
    187. Turrin, M. Q., dos Santos, L. F., & da Veiga, L. V. (1993). Generation of atrial natriuretic peptide (ANP) in perfused lungs of spontaneously hypertensive rats (SHR). Comparison to Wistar-Kyoto (WKY) and Wistar (W) rat strains. Comp Biochem Physiol C Comp Pharmacol Toxicol, 104(2), 233-238.
    188. Umehara, M., Ago, Y., Kawanai, T., Fujita, K., Hiramatsu, N., Takuma, K., et al. (2013). Methylphenidate and venlafaxine attenuate locomotion in spontaneously hypertensive rats, an animal model of attention-deficit/hyperactivity disorder, through alpha2-adrenoceptor activation. Behav Pharmacol, 24(4), 328-331.
    189. van den Bergh, F. S., Bloemarts, E., Chan, J. S., Groenink, L., Olivier, B., & Oosting, R. S. (2006). Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav, 83(3), 380-390.
    190. Van Liew, J. B., Zamlauski-Tucker, M. J., & Feld, L. G. (1993). Endogenous creatinine clearance in the rat: strain variation. Life Sci, 53(12), 1015-1021.
    191. Wang, G., Thomsen, K., & Frokiaer, J. (2013). Renal responses to acute volume expansion in spontaneously hypertensive rats is related to the baseline sodium excretion. Scand J Clin Lab Invest, 73(7), 529-537.
    192. Webb, R. C., VANHOUTTE, M. D. P., & BOHR, D. F. (1980). Adrenergic Neurotransmission in Vascular Smooth Muscle from Spontaneously Hypertensive Rats. Hypertension, 3(1).
    193. Wheal, A. J., Bennett, T., Randall, M. D., & Gardiner, S. M. (2007). Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats. Br J Pharmacol, 152(5), 717-724.
    194. Wickens, J. R., Macfarlane, J., Booker, C., & McNaughton, N. (2004). Dissociation of hypertension and fixed interval responding in two separate strains of genetically hypertensive rat. Behav Brain Res, 152(2), 393-401.
    195. Widimsky, J., Kuchel, O., Tremblay, J., & Hamet, P. (1991). Distinct plasma atrial natriuretic factor, renin and aldosterone responses to prolonged high-salt intake in hypertensive and normotensive rats. J Hypertens, 9(3), 241-247.
    196. Yosida, T. H., & Amano, K. (1965). Autosomal polymorphism in laboratory bred and wild Norway rats, Rattus norvegicus, found in Misima. Chromosoma, 16(6), 658-667.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Malque Publishing

How to cite

Rezende, L. M. T., Soares, L. L., Campos, H. O., Natali, A. J., Coimbra, C. C., & Prímola-Gomes, T. N. (2023). Experimental control for the spontaneously hypertensive rat: Wistar or Wistar Kyoto? A systematic review and meta-analysis. Multidisciplinary Reviews, 6(4), 2023039. https://doi.org/10.31893/multirev.2023039
  • Article viewed - 262
  • PDF downloaded - 90