Nanotechnology and high-performance concrete: Evaluating mechanical transformations

Sunil Kumar Jakhar* | Rajesh Kumar† | Beemkumar Nagappan* | Anjali Singh*

*Vivekananda Global University, Jaipur, India.
†Noida Institute of Engineering and Technology, Noida, India.
JAIN (Deemed-to-be University), Karnataka - 562112, India, Department of Mechanical Engineering.
Maharishi University of Information Technology, Uttar Pradesh, India.

Abstract The High-performance concrete (HPC) is defined by the attained strength and durability that are superior to conservative techniques. The features of ordinary concrete that are achieved at certain times and locations, used to establish the standards for HPC. The use of nanotechnology in HPC is attracted significant attention globally because of its small particle sizes, filling capacities, enormous surface areas and strong macro quantum tunnel property. By adding nanotechnology to HPC, it increases the whole diameters of the cementsations matrix, improves cement hydration and raises matrix density. This study provides a review of current developments in HPC and assesses the effects of different nanotechnology on HPC characteristics, to provide an in-depth understanding of the potential of nanotechnology reinforced in HPC. This review evaluates the mechanical characteristics of HPC containing compressive strength (CS) by applying nano calcium carbonate, nano silicon dioxide, nano titanium dioxide and carbon nano tubes. According to findings in this review, introducing different nanotechnology enhances HPC’s mechanical properties while decreasing its flexibility. While integrating nanotechnology into HPC for the greatest possible outcomes in construction, review contributes to expand the collection of information in the area of building materials. To provide a low-impact construction material and an ecologically friendly solution, more consideration is required given to nanoparticles’ antibacterial, self-cleaning, air depolluting and air-cooling properties. By increasing the reactivity of various fillers, including nanoparticles with other mineral admixtures reduces the quantity of cement needed in concrete.

Keywords: construction, nanomaterials, nanocalcium carbonate, nanocalcium oxide, nano ferrous-ferric oxide

1. Introduction

The many desirable technical features of concrete have led to its widespread application in construction and civil work. Concrete is utilized to construct the basic components of apartments and tall buildings because of its exceptional strength combined with its reinforcing, formability and ambient temperature hardening properties. Reinforced concrete is the preferred material for construction materials that are subjected to adverse environmental effects, such as tunnels, bridges, dams, and reservoirs (Alsaid et al 2019). These benefits include high temperature and exceptional water resistance (Nguyen et al 2021). The rapid development of nanotechnology has been followed by improvements in the characteristics of nanomaterials and their decreased cost, as well as a growing desire for adaptable devices to be characterized and a better understanding of materials on the nanoscale and microscale. As a result, the number of applications of nanotechnology is expected to increase (Luo et al 2019). Concrete mixes created with selected premium mix ingredients, an ideal mix design and a low water-to-powder ratio are referred to as high-performance concrete (HPC) mixes. The following features and specifications are utilized for HPC definitions: strong strength, ease of placement, long-term mechanical qualities, volume stability and extended life in harsh environments (Figure 1) (Akhnoukh and Elia 2019).

The most commonly used building material in contemporary engineering construction is concrete. HPC uses a material with stricter standards for strength, durability, workability and requirements for the building of concrete structures in complicated situations (Du et al. 2019). High-grade cement, water, aggregates and active fine mixtures combine to create homogenous HPC, a type of concrete with excellent strength, workability and durability. Numerous concrete structures, including homes, bridges and components, employ HPC. It is the structure’s service life and increases its durability while reducing the size, weight and quantity of the material used (Li and Song 2022). The use of HPC in the building sector has expanded in recent years. High strength, exceptional durability and adequate workability are a few of the many alluring benefits of HPC (Jamshidi et al 2020). To create HPC, additional cementation elements such as blast furnaces and superplasticizers are
necessary, which makes it difficult to forecast the CS of HPC through any degree of correctness (Han et al 2019). The CS of concrete is one of the most important mechanical parameters considered when designing a concrete mixture for any HPC. For materials with essential mechanical properties (MPs), the CS of concrete serves to control quality. Due to the material composition, there seem to be disparities in performance between traditional concrete and HPC concerning the CS of concrete (Anyaoha et al 2020). Ordinary concrete and HPC are employed in conventional and industrial structures. High-strength concrete produced using a composite substance called HPC is used in bridges, tall structures, tunnels and pavement projects to withstand environmental conditions. Therefore, the main components of conventional concrete, Portland cement, water-cement proportions, and fine and coarse aggregates combined with supplemental cementation materials are required for HPC. These materials include blast furnace slags, fly ash and synthetic additives such as super plasticizers (Kaloo et al 2020). A few of the many appealing benefits of HPC, including its high strength, exceptional durability and adequate workability, are the means by which concrete grows. Whether the HPC strength can meet the design requirements is the main concern in real-world engineering applications. A basic compression test is a genuine HPC in CS (Han et al 2019). This method is labor intensive and costly, and it takes a long time to determine the CS of powerful concrete. It is essential to accurately and promptly predict the durability of HPC (Pengcheng et al 2020). Over the past few decades, nanotechnology has proven to be a competitive means of increasing the durability and strength of construction materials (Syamsunur et al. 2022). The term nanotechnology describes the process of creating, assembling and applying functional structures that have a minimum of one feature dimension expressed in nanoscale units. The creative and enhanced physical, chemical and biological features of these materials and systems are attributed to the tiny size of their component particles or molecules (Mansi et al. 2022). One of the most crucial components of infrastructure is pavements. The use of aggregate materials and carbon-based transporters of energy as industrial power is dependent on nonrenewable natural resources in pavement technology. Using waste materials along with industrial byproducts such as glass cullets, fly ash and blast furnace slag is one way to increase energy efficiency in phase (Coffetti et al. 2022).

In this review, the introduction of various nanotechnologies into HPC improved the MP and reduced the flexibility of the material.

Contributions:

- The incorporation of several nanotechnologies into HPC results in an improvement in the MP of the material and reduces the flexibility of the material.
- To provide an extensive understanding of the potential of nanotechnology for enhancing HPC, recent advances in HPC have been made, and the effects of various nanotechnologies on HPC features have been evaluated.
- Increasing the amount of information about building materials while using nanotechnology in HPC is needed for the best potential results in construction.

2. Systematic review procedure

2.1. Development of HPC

HPC is durable because its strength is superior to that attained using conventional methods (Dushimimana et al 2021). To ascertain the attributes required for building materials to be classified as having high efficiency, the properties of standard concrete that are achievable inside a certain time and location are examined (Raza et al. 2022).
2.1.1. Construction using nanotechnology

The use of nanotechnology for strengthening and durable structural steel is widespread. Refinement of the material grain size by nanomodification decreases the amount of steel structure breakage (Jones et al. 2019). Compared with nanomaterials, concrete has become more ductile and has a higher CS. The strength, modulus and ductility of concrete are altered by the addition of carbon nanotubes or nanofibers (Mohajerani et al 2019).

2.2. Flexibility of concrete

In place of coarse aggregates, flexible concrete contains fine silica sand and fibers made of polyvinyl alcohol that separate it from regular concrete (Paslawski and Rudnicki2021). A range of fibers, such as silica, asbestos, steel and glass fibers, are used in the production process. The elasticity of the new concrete is a result of these microfibers (Qian et al 2020). Maintaining the flexibility of concrete is important because it allows for self-compaction of the concrete, which is necessary to provide maximum strength in new concrete (Lau et al. 2023). When assessing the HPC, sag and slumping flow are crucial factors to consider. Mineral compounds at the nanoscale, such as nanosilicon dioxide (SiO_2) (NS), nanocalcium carbonate (CaCO_3), nanoaluminum oxide (Al_2O_3) (NA), nanoferrous-ferric oxide (Fe_3O_4), nanotitanium dioxide (TiO_2), carbon nanotubes (CNTs) and nanometakaolin (NMK), are utilized to improve the quality of concrete.

2.2.1. Effect of CNTs on HPC flexibility

CNTs are enormous, cylindrical molecules composed of a hexagonal structure of hybridized carbon atoms. CNTs are created by rolling up one or more graphene sheets (Dahlan 2021). As the amount of CNTs in the concrete mixture increases, the slump decreases, and the fluidity deteriorates (Douba et al. 2019). The sag of the combination satisfies the construction standards.

An appropriate quantity of water-reducing agent is applied to the concrete mixtures with varying CNT concentrations. Furthermore, CNTs affect the adherence of concrete.

2.2.2. Effect of TiO_2 on HPC flexibility

Titanium oxide is widely used in optical waveguides, sensors, capacitors, interference filters and solar cells (Amor et al. 2022). There are three different phases of titanium oxide: rutile, anatase and cubic. At 800°C, the anatase phase changes to a rutile phase (Choi et al 2021). The amount of high-range water-reducing admixture (HRWRA) needed to attain a decrease of 650 ± 25mm for every composition. The primary cause of self-compacting concrete surface absorption is the solidifying delay imposed by a high HRWRA. Under various water-binder ratios, it was found that the use of 5% TiO_2 increased the need for HRWRA.

2.2.3. Effect of NMK on HPC flexibility

Kaolin rock was used to create NMK by activating kaolin clay at various temperatures (700– 800°C) for two hours, followed by crushing and ball milling for forty to sixty hours (Kumar et al 2021). A kind of supplemental material known as NMK was added to the mixture to recover its qualities. The base of meta-kaolin is its ability to alter different types of concrete operations (Zhan et al 2021). HPC becomes less feasible with the inclusion of NMK and meta-kaolin.

2.2.4. Effect of NA on HPC Flexibility

Nanosized aluminum oxide, known as nanosized alumina, exists in the form of spherical or nearly spherical nanoparticles and in the shape of either oriented or undirected fibers (Muzenski et al 2020). The use of NA in concrete has been researched even though NA is a kind of alumina (Zhang and Zhu 2023). Although it affects the time it takes for cement to set, the addition of NA ensures certain qualities of concrete to be modified effectively.

2.2.5. Effect of NSs on HPC flexibility

One appropriate indication of the flexibility of the new concrete is considered to be a decline. To assess the variations within NS in addition to fly ash (FA) affected by the sagging movement of freshly set concrete at ideal replacement rates of two percent and forty percent, respectively (Alkhatib et al 2020). Using NSs has gained particular interest in HPC manufacturing in recent decades. Considering its high activity and large surface area, NS is a type of nanotechnology used in HPC because of its ability to enhance metallic activities with concrete (Mostafa et al 2021).

2.2.6. Effect of nanoCaCO_3 on HPC flexibility

A particular kind of nanomaterial with a tenth of the price of nanosilicon is called nanoCaCO_3 (Ding et al 2021). Several investigations have shown that the addition of CaCO_3 tiny materials can increase the specific surface area of cement sludge, increasing the need for cement sludge water (Shen et al. 2023). To identify the relationship between the cement sludge and
CaCO₃ nanowater needs. The purpose of assessing the need for water is to increase as the amount of nano-CaCO₃ increases. The water consumption increased by 3.2%, 1.8% and 0.4% at nanoCaCO₃ concentrations of 2%, 5% and 8%, respectively.

3. Modification of the Mechanical Properties of Concrete

In this section, the impacts of adding nanomaterials such as SiO₂, CaCO₃, and CNTs with TiO₂ in concrete on the modification of the MP of CS are examined.

3.1. Modification of the MP content of concrete with the nanoSiO₂

The development of concrete has great potential for improving the MP content of concrete through the addition of different kinds of nanotechnology. Assessing the effect of nanoparticles on important MPs, such as CS, in nanoconcrete has been the focus of several investigations. Among the nanotechnologies that are used to enhance HPC, NSs are distinctive. The NS is an important component that gives cement particles the ability to serve as particles and plays a role in traditional cement. When the concrete is exposed to temperatures as high as 600 degrees Celsius, 400 degrees Celsius, 200 degrees Celsius and 0 degrees Celsius, the CS of the concrete mix is maintained by incorporating 1%, 1.6%, 3.5% and 5% by weight of nano-SiO₂ to the concrete mix, as depicted in Table 1 and Figure 2.

<table>
<thead>
<tr>
<th>Nano-SiO₂</th>
<th>Compressive Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99 90 69 50</td>
</tr>
<tr>
<td>1.6</td>
<td>99 89 83 72</td>
</tr>
<tr>
<td>3.5</td>
<td>99 83 74 52</td>
</tr>
<tr>
<td>4.5</td>
<td>99 89 77 37</td>
</tr>
</tbody>
</table>

Figure 2 Graphical representation of CS tested on heat with nano-SiO₂.

3.2. Modification of the MP content of concrete with nano-CaCO₃

Cement-based materials modified with nano-CaCO₃ are considered to serve three main functions: nucleation, filling and chemical. These analyses have been widely conducted. Chemicals and nucleation are the primary impacts of nano-CaO₃ on the cement hydration process. By adding nano-CaCO₃, the effects of crystal nucleus effects, clipping and microaggregation improve the particle gradation, fill in gaps and aid in the improvement of workability with the addition of CS powder.

The concrete CS at 3 days, 7 days and 28 days is influenced and maintained by the addition of nano-CaCO₃ at different levels, specifically Level 1 through Level 5, in the concrete mix, demonstrating its effect on the MP. The results offer significant additional data on the effects of nano-CaCO₃ quantity on the strength development of concrete through varying curing times, as depicted in Table 2 and Figure 3.
Table 2 Numerical outcomes of CS tested on heat with nano-CaCO₃.

<table>
<thead>
<tr>
<th>NanoCaCO₃</th>
<th>Compressive Strength (MP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 days</td>
</tr>
<tr>
<td>Level 1</td>
<td>23.78</td>
</tr>
<tr>
<td>Level 2</td>
<td>24.23</td>
</tr>
<tr>
<td>Level 3</td>
<td>20.75</td>
</tr>
<tr>
<td>Level 4</td>
<td>67.35</td>
</tr>
<tr>
<td>Level 5</td>
<td>3.86</td>
</tr>
</tbody>
</table>

Figure 3 Graphical representation of CS tested on heat with nanoCaCO₃.

3.3. Modification of the MP of concrete with the nano-CNTs

The HPC can be altered by altering the flexibility of CNTs. In addition to the strengthening and hardening of HPC, CNTs are considerably more effective than other nanomaterials. CNTs have been investigated in recent years for their ability to alter and produce cement-based composites with superior qualities. CNT aggregates easily, so it is quite challenging to create identical dispersions of particles.

The concrete mixed with 1%, 0.2%, 0.3%, 0.03% and 0.06% CNT weight seemed to maintain its MP, such as CS, even after 28 days of hardening. The strengthened concrete maintains its structural integrity at temperatures as high as 600, 800 and 300 degrees Celsius, indicating the possibility of better heat resistance under extreme temperatures, as shown in Table 3 and Figure 4.

Table 3 Numerical outcomes of heat-tested CS with nano-CNTs.

<table>
<thead>
<tr>
<th>Carbon nanotubes(CNT)</th>
<th>28d</th>
<th>300oc</th>
<th>600oc</th>
<th>800oc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101.05</td>
<td>125.1</td>
<td>79.06</td>
<td>25.11</td>
</tr>
<tr>
<td>0.03</td>
<td>105.21</td>
<td>130.4</td>
<td>80.25</td>
<td>27.54</td>
</tr>
<tr>
<td>0.06</td>
<td>120.11</td>
<td>135.6</td>
<td>81.61</td>
<td>26.11</td>
</tr>
<tr>
<td>0.2</td>
<td>145.33</td>
<td>140.21</td>
<td>85.71</td>
<td>27.35</td>
</tr>
<tr>
<td>0.3</td>
<td>135.66</td>
<td>145.25</td>
<td>87.91</td>
<td>29.41</td>
</tr>
</tbody>
</table>

3.4. Modification of the MP content of concrete with the nanoTi O₂

The nano-Ti O₂ is added to HPC and regular concrete, providing a significant self-cleaning property that makes it possible to use green construction materials. This promotes the early strength of concrete. During the manufacturing process, small and dusty nanno-Ti O₂ particles have important adverse effects on the environment. The flexural strength and CS of the concrete increased with the addition of a modest quantity of Ti O₂. With an increase in the Ti O₂ concentration, the strength of the concrete specimens initially increases before decreasing. When high-quality Ti O₂ is added, the specific surface area and water demand of the material increase. This leads to the matrix material being dispersed unevenly throughout the mixture and decreasing the durability of the cement.

While modifying the weight percentages of nano-Ti O₂ (control, 3.5%, 6.5% and 9.5%) in the concrete mix, a test was carried out to preserve the CS of the concrete at 28 days, 56 days and 90 days. The information gathered during these periods is beneficial for understanding well-performing and long-lasting nano-TiO2-modified concrete, as depicted in Table 4 and Figure 5.
4. Effects of nanotechnology on Hpc Mechanical Properties and Flexibility

In concrete with normal and high strengths, the relationships between the CSs are rather close. With an increase in CS, the ratio decreases, while steam and steam curing encourage the early growth of concrete strength (Abhilash et al. 2021). The concentration of the ultrahigh-density phase and the nano-MPs in the solution are linked to the curing regime (Du et al. 2019). This connection is influenced by the microstructure, fluid composition and progression of supply. The MP of concrete is improved by the use of mineral and chemical additives, as well as industrial waste and agricultural residues such as fly ash, palm oil ash, rice husk ash and silica fume (Saleh et al. 2021). It covers issues with resistance to chemical degradation and impermeability that are connected to durability (Orakzai 2021).

Several experiments have demonstrated that these chemicals improve various features of concrete while decreasing its negative impact on the environment. Large amounts of natural resources, such as water and sand, are required for the
industrial manufacture of concrete (Gao et al 2020). Recycled concrete seems to benefit from the addition of nanosilica. The addition of nanosilica to recycled concrete is shown to increase its CS in comparison to regular concrete. Despite increasing nanosilica amounts, concrete is less workable.

Concrete containing CNTs offers insulation against electromagnetic interference and is used to discover flaws without causing damage. Civil constructions benefit from the use of CNT cement composites as stress sensors since their electrical resistance varies in direct proportion to the level of compressive stress (Sivasankaran et al 2019). Other advantages of CNTs in concrete include ductility, fire resistance, decreased thermal conductivity, chemical resistance, enhanced absorption properties and longer service life.

More hydrated products develop in the presence of TiO2 nanoparticles, contributing to the increase in hardness of the concrete samples, including the nanoparticles. Concrete has enhanced resistance to water permeability due to the action of nano-TiO2, which acts as a nanofiller and recovers the pore structure (Hamed et al 2019). When TiO2 was added to the samples, the pore structure improved, and the amount of mesopores and macropores increased. TiO2-containing samples exhibit enhanced resistance to chloride penetration and permeability. Even though the resistance increases as the nanoparticle concentration decreases, the nanoparticles reduce the overall ionic permeability of the mortar.

5. Final considerations

HPC MP and durability are improved by the use of nanotechnology, which is used in building material analysis. The utilization of certain nanoparticles increases the CS of nano-SiO2, CaCO3, CNTs and TiO2. Concerning the microstructure of concrete, it is clear that the presence of nanoparticles contributes to the formation of a less porous and denser structure. As a result of this densification, the concrete is resilient to carbonation, chemical assaults and a decrease in chloride permeability. The development of low-impact construction supplies and environmentally conscious options is focused on the special qualities of nanoparticles, such as their antibacterial qualities, self-cleaning abilities, air depollution capabilities and air cooling attributes. By increasing the reactivity of different fillers, the incorporation of nanoparticles with other mineral admixtures has the potential to lessen the dependency on cement in concrete. For professionals looking to establish a waste-free environment for the sake of mankind, investigating the use of industrial or agricultural waste materials such as glass, old tires, or agricultural shells as aggregates offers a provocative strategy. The cost of producing nanomaterials for concrete impacts the overall viability of building projects. It is anticipated that future study and development in this developing industry will be motivated by the desire for new approaches, environmentally responsible procedures and affordable construction materials.

Ethical Considerations

Not Applicable.

Conflict of Interest

The authors declare no conflict of interest.

Funding

The current review did not receive any financial support.

References

