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1. Introduction 

 

Deep learning incorporates numerous hidden layers and more rooted combinations that average artificial neural 
networks (ANNs) to produce more refined and better-performing autonomy in learning algorithms (O'Shea and Nash,2015). 
Deep neural networks (DNNs) are neural networks that are made up of "neurons”; these neurons contain a specific invitation 
(or activation) and specifications (or parameters) that convert input data, such as UAV imagery, into scenario-based maps 
while gaining knowledge (Schmidhuber et al. 2015). (See Appendix 1 on page 170 for a review study of the DNN architecture 
with an explanation of its types, history, applications, and development). 

Image segmentation, which has grown into an area of study in image processing and computer vision, is the method 
of dividing an image into meaningful and nonoverlapping areas. It is a crucial step in natural scene perception. According to 

Abstract Unmanned Aerial Vehicles (UAVs) have revolutionized data acquisition across various domains, presenting 
immense potential for image processing and semantic segmentation. This literature review encompasses a thorough 
exploration of advancements, techniques, challenges, and datasets pertaining to UAV image semantic segmentation. It 
begins by introducing the fundamental concepts of UAVs, highlighting their pivotal role in capturing high-resolution 
imagery that serves diverse applications. The integration of deep learning algorithms with UAVs is emphasized, unlocking 
new horizons in autonomous flight, security, and environmental monitoring. Delving into the core principles of semantic 
segmentation, the review elucidates the critical task of classifying every pixel in an image. Convolutional Neural Networks 
(CNNs) are presented as the cornerstone technology, tracing their evolution from traditional CNNs to the highly adaptable 
Fully Convolutional Networks (FCNs). A substantial portion of the review is dedicated to FCNs, underscoring their ability to 
process images of varying dimensions while maintaining spatial coherence in the output. Their pivotal role in semantic 
segmentation, encompassing both classification and localization, is articulated. The subsequent sections delve into a 
comprehensive survey of state-of-the-art models, including SegNet, PSPNet, DeepLabNet, EfficientNet, DenseNet-C, and 
LinkNet. Each model's unique strengths and applications contribute to the evolving landscape of semantic segmentation 
tasks. The versatility of the U-Net architecture takes center stage in the latter parts of the review. Its fundamental 
structure is elucidated, followed by a comprehensive examination of its manifold adaptations—3D-U-Net, ResU-Net, U-
Net++, Adversarial U-Net, Cascaded U-Net, and Improved U-Net 3+. These modifications address intrinsic challenges such 
as limited receptive fields and class imbalances, propelling U-Net to the forefront of image segmentation techniques. The 
subsequent sections pivot toward the application of U-Net in UAV image segmentation, illustrating its efficacy in diverse 
tasks, including land cover and crop classification. Nevertheless, persisting challenges, such as the scarcity of annotated 
datasets and the need for model generalization across varied environmental conditions, remain key areas of concern. The 
review culminates by underlining the significance of large, authentic datasets and data augmentation techniques. 
Furthermore, a brief exploration of publicly available UAV image datasets is presented, enhancing our understanding of 
the resources accessible for training and evaluating models. This comprehensive literature review encapsulates the 
dynamism of UAV image processing and semantic segmentation, illuminating recent developments and avenues for future 
research in this burgeoning field. 
 

Keywords: UAV image segmentation, deep learning, semantic segmentation, convolutional neural networks, U-Net 
architecture, environmental monitoring 
 

https://doi.org/10.31893/multirev.2024118
https://www.malque.pub/
http://crossmark.crossref.org/dialog/?doi=10.31893/multirev.2024118&domain=pdf
https://orcid.org/0000-0002-5628-2102
https://orcid.org/0000-0002-8983-5527
mailto:t360pi@gmail.com
https://orcid.org/0000-0002-8391-8620


 
2 

 

  

 

Ahmed et al. (2024) 

www.jabbnet.com 

https://www.malque.pub/ojs/index.php/mr 

human visual perception, these regions are significant and nonoverlapping. Two obstacles exist in image segmentation: (1) 
how to define "meaningful regions" given the ambiguity of visual perception and the range of human comprehension, which 
makes image segmentation a poorly posed problem; and (2) how to accurately represent the objects in an image. The 
performance of deep-learning algorithms in image processing has considerably improved in the past decade because of the 
abundance of samples (labeled examples) and increased computer functionality (Traore et al., 2018). This literature review is 
mainly based on convolutional neural networks (CNNs) for image segmentation, particularly CNNs for UAV image 
segmentation, and the use of the U-Net model for this segmentation task. 

 

2. CNN Architecture Overview 
 

CNNs are highly efficient at segmentation, classification, natural language processing, and video processing. According 
to O'Shea and Nash (2015), CNNs are composed of multiple layers, such as convolution, pooling, and entirely linked layers, 
which train and extract characteristics based on raw input data. During training, the back propagation method is used to 
regulate the quantity of weight variation in response to the target. CNNs can extract hierarchical features from low to high 
levels of abstraction, analogous to the neocortex's deep and layered learning process; therefore, the popularity of CNNs is 
primarily due to this capability. Researchers have enhanced CNN performance by modulating its architecture, weights, and 
parameters, as well as by increasing and modifying the training data. The primary layer of a CNN, the convolution layer, 
consists of neurons (convolution kernels) that divide the input image into smaller fields of reception and convolve them using 
a predetermined weighting scheme (Sakib et al., 2019), as shown in figure 1. Large amounts of data and high-powered 
processing resources, such as GPUs, are needed for training CNNs. 

 

 
Figure 1 Convolution layer (Sakib et al., 2019). 

 

CNN pooling follows the convolution kernel. This layer’s downsamples, as shown in Figure 2 below, reduce the 
convolution layer's feature data while retaining the most important information. 
 

 
Figure 2 Pooling layer (Sakib et al., 2019). 
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CNNs, which are excellent image classifiers, require fully connected layers. Figure 3 shows how a few neurons are 
classified (Pelletier et al., 2019). 

 

 
Figure 3 Visualization of the fully connected layer (Pelletier et al., 2019). 

 

The CNN activation function defines which model data should be communicated and which should not (Nanni et al., 
2020). Several functions, including softmax, ReLU, sigmoid, and tanh, are employed to introduce nonlinearity into the 
network. Function selection is determined by the specific objective, for example, sigmoid for binary classification and softmax 
for multiclass classification. Using mathematical techniques, the activation function establishes whether the neuron should 
be engaged based on the input's relevance to the prediction. CNNs can be developed via unsupervised or supervised 
approaches to machine learning, according to the desired outcome. CNNs are designed with specialized layers, such as 
convolutional, pooling, fully connected, and dropout layers, to address classification and segmentation challenges. 

The process of convolution can be expressed mathematically as shown in equation 1, where s(t) represents the output 
function at a specific state of time, which is the feature map, x(a) represents the input position function, and w(a) represents 
the kernel, which means the weights. 

 

𝑠(𝑡)  =  ∫  𝑥(𝑎)𝑤(𝑡 −  𝑎)𝑑𝑎 (1) 
 

 

In CNN, the feature map s (t) is produced by this formula. In CNNs, convolutions are performed on 2-D tensors made 
up of the input image’s height, width, and color channels. These operations take patches from the input and apply 
transformations to create a feature map with varying depths as an output. Therefore, the convolution is defined by two 
important aspects: first, the size of the filter applied to the layer, which represents the receptive field, and second, the 
number of filters, which represents the depth of the output feature map. 

The computation of 2D convolutions is performed by moving a square window with a specific dimension across the 
input feature map. The dimensions of an image are height, width, and color channel. The color image has three RGB 
channels, which are red, green, and blue; thus, when the feature map of an image is subjected to a 2D convolution process, 
2D patches of the surrounding features are produced. Then, by this process, these patches are converted to a 1-D vector. 
Afterward, the same process is repeated with as many filters as needed. Then, all the 1-D vectors produced by those filters 
are spatially reconstructed into a 2-D output map that corresponds to all the input map locations. This process is illustrated in 
Figure 4 below. 

 

 
Figure 4 Visual representation of dimensional convolution. 
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The stride is the step size by which the kernel moves across the CNN when applying the convolution operation. This 
step size can produce different output sizes of feature maps; in other words, it can downsample the feature maps. For 
example, if a stride of 2 implies, then the output feature map's dimensions are downsized by a factor of 2 without applying 
any padding process, as shown in Figure 5. 

 

 
Figure 5 Strides. 

 

Convolutional layers are used to produce a larger receptive filter, which allows the model to recognize more input 
image features. Examining all of the pixels in an image is a simple way to process it; however, this can take a very long 
training time, so to minimize this training time, some of the input image pixels are meaningless and have no significant 
feature of interest; therefore, when a filter is applied in the convolutional layer, it will reduce the image to the specific 
features of interest. 

In the convolutional layer, many and different sizes of filters are applied, each filter has its weights to be learned, and 
each filter wipes out all pixels of the input image. Then, matrix multiplication is performed between the input image pixels 
and the applied filter weights. This calculation is repeated at each stride step, and the results of these calculations are 
fed into a specific activation function. The outputs of all activation maps are stacked together to produce the final volume of 
the convolutional layer's output. 

Image compression is performed by pooling layer application. There are three types of pooling operations. The first 
type is max-pooling, in which the maximum number is picked up as a result of the sliding window. The second type is average 
pooling, in which the sliding window result is computed using the average statistic. The third pooling type is min-pooling, in 
which the minimum value is computed as a result of the window result. Therefore, using a pooling layer can incredibly reduce 
the amount of information delivered by the image, and this in return leads to minimizing the training time and lowering the 
memory use. 

The pooling function is used mostly in problems that involve multiclass classification because of its desirable 
performance in real number value compression into a value range between 0 and 1 Banerjee et al. (2020) and ensuring that 
the sum of the whole probabilities of the output equals 1. The mostly sigmoid function is used as an activation function to 
compress all input values into this range. However, input values > zero produce results > 0.5, while those < zero produce 
results < 0.5. Finally, any input with a 0 value produces a result equal to 0.5. Therefore, this sigmoid function is mostly used 
as the output activation function for binary classification, and the softmax function is used as the output activation function 
for multiclass classification problems. 

 

3. Regularization Techniques 
 

The first technique of regularization is called dropout. The dropout process is a simple one; the addition of a dropout 
procedure after a neural network layer either destroys or removes a random number of neurons (Setiawan et al., 2022). The 
deleting rate or dropout rate is the rate by which the number of neurons is put off per layer, for example, if the dropout rate 
is set to 0.5, that means half of the neurons are deactivated randomly per layer in the network before feeding to the next 
layer. The higher the number of deactivated neurons picked, the greater the regularization impact is. These deactivated 
neurons are temporary during the training phase, and their updated weight is not fed to the backward path neurons, 
meaning that the greater the number of deactivated neurons is, the fewer the number of training samples for the 
subsequent layer, which can cause the underfitting problem. Therefore, in practice, the hidden layer should have a typical 
dropout rate p in the range of 0.2 and 0.5, while that of the input layer is 0.2. 

The second regularization technique is batch normalization (Luo et al., 2018). One of the biggest challenges during 
training is because the input from the previous layer is changed when tweaking the weights throughout the backpropagation 
process, so the batch normalization technique comes to be applied either before or after activations to reduce the 
generalization error and speed up the training process by a considerable number of epochs in some cases, reducing the 
epochs to a half or even more. In addition, batch normalization provides great regularization to the model, so there is no 
need for another type of regularization technique to be applied. 
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4. Model Training 
 

In general, the training process of DNNs is challenging for several reasons. One of these reasons is that the values of 
the parameters of every layer are changed at each iteration during the training process, and the training process of any 
neural network depends on some important components, such as layers, input data, loss function, and optimizer. The layers 
are the core component of the neural network (NN); each single NN layer receives the input data from the previous layer and 
processes these data and then produces output data in data containers known as tensors. In each convolutional layer, there 
are values known as weights. NNs are trained to identify the patterns in the data, while the goal is to optimize the cost 
function and use an optimization algorithm to optimize the cost function to obtain the optimal weight. 

Furthermore, NNs are trained to identify the optimal weight values that will specify the transformations to be 
performed on the incoming data. Figure 6 depicts the network layers’ parameterization process. The setup of these weights 
is challenging to optimize for varied tasks because there can be millions of parameters that are interdependent. A loss 
function is utilized to generate a weight configuration; it measures the extent of performance of the layer by comparing the 
actual values with the predicted values. The first stage of the backpropagation (BP) algorithm is the determination of the final 
loss value, followed by the computation of each parameter’s contribution in the computed loss value from the input layer 
through all hidden layers down to the output layer. The stochastic gradient descent is one of the methods that is used to 
determine the loss function derivatives at a particular point of the training process to tweak the weights` values in the 
direction of reducing the loss function to the minimum and hence optimizing the model. 

           Figure 7 shows the representation of an NN training process. The weights are randomly initialized (using a 
random initializer) in this training loop, which results in a high loss score because the weights at first are mostly unsuitable 
for determining the patterns. The network, on the other hand, adjusts its weights with each training batch and gradually 
improves until it has a small loss. 

 

 
Figure 6 Weight value-based parameterization of DL layers. 

 

 
 

Figure 7 Flow chart of the training process for an NN. 
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5. Model Architecture 
 

The model architecture is composed of layers arranged in stacks; in these layers, each stage learns a useful pattern by 
successively filtering the input data. These layers are shown in Figure 8, which depicts a basic 4-layer NN for the classification 
of handwriting from the MNIST dataset. 

 

 
Figure 8 Four-layer neural network. 

 

Traditionally, densely linked layers, also known as completely connected layers, have been used for datasets other 
than images, in which all the neurons of one layer are connected to all the neurons of the past layer. On the other hand, 
dense layers can only learn patterns that fall within their input feature space, while each convolution filter is capable of 
learning patterns locally (kernel space or region of interest). This implies the possibility of fragmenting input 
images into edges and textures that are easily learned and are more beneficial for classification than for global patterns. 

 

6. Gradient descent algorithm (GDA) 
 

This is a search strategy for finding the local minimum of a function that can be differentiated, which is called a loss 
function. GDA is mostly used in ML to determine the parameters (weights) of a function that optimally reduces a cost 
function; the algorithm can be expressed mathematically as shown in equation (3.2). The following steps are repeated until 
convergence is reached: 

1. Calculate the parametric changes as a function of the learning rate based on the gradient. 
2. Use the updated parameter value to recalculate the new gradient. 
3. Check for the termination criterion; otherwise, revert to step one. 

The GDA is represented by the θ parameter for the optimization algorithm in equation (2.2). (α) is the learning rate – a 
tuning parameter in the optimization process. It decides the length of the steps. (α) is the gradient of the cost function (J) 
earnings to θ. 

 

                 (2.2) 
for (j=1 and j=0).                                

 

The leering rate is a configurable parameter; its value is in the range of 0.0 to 1.0. It is used to train NNs (note that 
logistic regression is an NN with just one neuron). Hence, the learning rate can determine how much the model should adjust 
to adapt to a particular situation. In other words, making some modifications in the gradient descent algorithm is workable 
for powerful deep neural networks. There are a few drawbacks of GDA; the prominent drawback is the needed number of 
computations per iteration of the algorithm. For instance, assume a case of 20,000 data points with 20 features; here, the 
sum of squared residuals will contain the same number of terms as the data points (that is, 20,000 terms in this case). Hence, 
the derivative of this function must be computed based on each of the features. This will require the following computation: 
20000 x 20 = 400,000 computations per iteration. If we consider 1000 iterations, it will be arriving at 400,000 x 1000 = 
400000000 computations to fully implement the GDA, which is much overhead; hence, GDA is not usually fast on enormous 
datasets, leading to the development of stochastic gradient descent (SGD). The term “stochastic” here means “random”, 
which comes to play when data points are detected at each step for the calculation of the derivatives. The SGD picks one 
data point randomly from the entire dataset per iteration to minimize the computational requirements. 

In stochastic gradient descent, only one data point is fed at each iteration; thus, it is a slow process, and to make it 
faster, batches have to be created in such a way that a batch consists of 16, 32, 48, 64 data samples, and training on batches 
makes the training process fast and reduces the computation. The Adam optimizer is a hybrid of gradient descent techniques 
with momentum; this technique is participating in speeding up the GDA in consideration of the exponentially weighted 

https://doi.org/10.31893/jabb.21001
https://www.malque.pub/ojs/index.php/mr
https://www.malque.pub/


 
7 

 

  

 

Ahmed et al. (2024) 

www.jabbnet.com 

https://www.malque.pub/ojs/index.php/mr 

average of the gradients. The algorithm tends to converge rapidly toward minima because it uses the averages. Furthermore, 
RMS prop, another algorithm, was proposed by Geoffrey Hinton as a gradient-based NN training approach. The gradients of 
complex functions, such as NNs, tend to either vanish or explode as the data propagate through such a function. RMS prop 
was created as a stochastic mini-batch learning algorithm that solves the problem by normalizing the gradient with a moving 
average of squared gradients. These processes of normalization equalize the step size and either lower it for high gradients to 
prevent explosion or raise it for minor gradients to avoid vanishing. Simply expressed, RMS prop treats the learning rate as an 
adaptive parameter rather than a hyperparameter. This indicates that the rate of learning fluctuates with time. 

 

7. Overfitting Issue 
 

If the model performs very well during the training phase but performs poorly in the testing phase when it is fed with 
unseen data, this model is said to be overfitted, and this happens mostly when the model makes predictions very close to the 
actual data point. In contrast, underfitting occurs when the model predicts too far from the actual data point. In some cases, 
overfitting occurs due to the small dataset for training. Therefore, the model must be balanced between overfitting and 
underfitting and must be regularized by using a regularization technique to avoid these issues because both of them hurt the 
model. 

 

8. Pretrained Models 
 

Keras applications come with several pretrained segmentation models that can be used. ResNet is one of the most 
widely used of these accessible models. All of these models have been pretrained on the ImageNet dataset, which contains a 
variety of images, to detect over 1000 classes. These models and U-Net are tested together to see how well they can learn 
semantic segmentation from UAV data. Trained ResNet50 as the backbone for the U-Net model is used at the beginning of 
this research in an attempt to solve the UAV image segmentation problem, but unfortunately, it was poorly performed, 
which might be because ResNet models are mainly used for image classification problems rather than image segmentation 
and because of the complexity of the resultant model, which has a high computational cost. 

 

9. Model Evaluation 
 

Metric, in general, measures the success of the model; in other words, it tells how well or bad the algorithm is 
performed. In general, each deep-learning model is built to implement a specific task. Therefore, for each type of problem, 
different metrics are developed; therefore, for the classification task, the most commonly used metrics are accuracy, 
precision, f1 score, ROC curve, and confusion matrix. For the object detection task, the most commonly used metrics are the 
IOU, dice coefficient, and mean average precision. Moreover, the metrics most considered for image segmentation tasks are 
the accuracy, IOU, and Dice coefficient. Segmentation means pixel-level classification; i.e., Each pixel needs to be classified 
into one class of many classes; hence, the considered metrics for the segmentation problems are accuracy, intersection over 
union, dice coefficient, and loss. These metrics will be used in this project to evaluate the success of the constructed U-Net 
models. Accuracy is a measure of the percentage of correctly predicted values out of all the considered values. It is calculated 
as shown in equation (2.3). 

 

Accuracy =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (2.3) 

 

Intersection over union is the intersection area divided by the area of the union of the actual and ground truth masks; 
this metric is extensively used in object detection and segmentation, as shown in Figure 9. 

 

 
Figure 9 Intersection over union. 

 

The dice coefficient is the evaluation metric by which the similarity of two sets of data is measured. It is mostly used in 
object segmentation and object detection. The dice coefficient is simply calculated as two times the intersection area divided 
by the area of the sum of the actual and ground truth mask, as shown in Figure 10. 
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Figure 10 Dice coefficient. 

 

10. Revolution of CNN for Image Classification 
 

The CNN is optimal for image recognition and speech recognition. Its convolutional layer decreases the image 
dimension without modifying the data. Pattern recognition in CNNs requires the translation of images into numerical data. 
Due to their pixel composition, images are converted to a numerical format before being input into the network (Traore et 
al., 2018). Table 1 summarizes the historical development line for the state-of-art CNN models that were developed for 
image classification tasks. 

 

Table 1 Review of CNN Image-Classification Algorithms. 

Algorithm Summary 

LeNet-5 (1998) 
Lenet-5 is presented in 1998. The architecture is simple to design (conv-pool-conv-pool-FC-FC).it is utilized to 

identify both handwritten and machine-printed text. 

AlexNet (2012) 

AlexNet is developed to enhance ImageNet performance and obtained a precision of 84.7%. Using convolutional 
layers and reception fields to investigate spatial correlation, it becomes one of the first deep convolutional networks to 

attain high accuracy (Alom, 2018). Properties of AlexNet include the use of the activation function of ReLU for all layers, 
simultaneous training on two GPUs, and data augmentation and dropout strategies to combat overfitting. Its design is 
regarded as the basis for CNN architectures, via subsequent models expanding upon its fundamental framework. 
AlexNet has the greatest record of citations among CNNs. 

ZFNet (2013) 
ZFNet is a refinement of AlexNet that improves accuracy. ZFNet employed smaller, 7x7-sized filters, whereas 

AlexNet used larger, 11x11-sized filters. It is trained with batch stochastic gradient descent 

ResNet 18, 34, 50, 101, 
and 152 (2015-2016) 

ResNet is feasible to train with hundreds or even thousands of layers while still achieving a compelling level of 
performance due to its flexibility. ResNet variants are 18, 34, 50, 101, and 152.  It is a deeper network rather than wider 
which means more layers with less computation, it is used a skip connection technique between blocks to avoid the 

vanishing gradient problem. 

GoogleNet Inception 
Module V1, V2, V3 

(2014-2015) 

GoogleNet topped the ImageNet competition in 2014 with its initial module, which employs skipping links to 
create a small module that is repeated throughout the network multiple times. It uses average pooling to decrease the 
number of layers and parameters with complete links. GoogleNet, with its nine inception modules, is a wider network 

that prioritizes efficiency. It depicts multiscale objects in an image by employing various filter sizes, 1x1 convolutions, 
and scaling convolutions, alongside filters for minimizing parameters and computation (Soundty et al., 2021). 

VGG16,19 
(2015)  

Oxford's Visual Geometry Group designed the VGG16 and VGG19 deep architecture neural networks. The 
convolutional layer parameters are represented as "cone filter size> - number of channels>." To capture up, down, left, 
and right, VGG employs extremely small receptive fields of 33 with stride and pad = 1. For maintaining the same 

resolution, it also employs 1x1 convolution filters with stride=1, followed by a ReLU function, alongside max-pooling size 
2 with stride 2 for all CNN layers. VGG possesses fewer parameters than AlexNet. 

ResNext (2017) 
Res-Next, on the contrary hand, is an enhanced variant of ResNet that employs group convolutions and parallel 

pathways. 

SENet (2018) 

Squeeze-and-Excitation Networks, or SENets, are a new building element for convolutional neural networks 
(CNNs) that improves channel interdependencies while incurring essentially no additional computational cost. They 
were put to use in this 2015's ImageNet competition, where they contributed to a 25% improvement in performance 
compared to the previous year (Hu et al., 2018). In addition to this enormous improvement in performance, they can be 

simply integrated into already existing designs. 

Mobile Net’s V1, V2, V3, 

V4 (2018-2019) 

MobileNet is a convolutional neural network optimized to use in real-time, embedded vision systems on mobile 
devices. They are built on a simplified design that makes use of depthwise separable convolutions to construct 
lightweight deep neural networks that can have minimal latency for mobile and embedded devices. 

ShuffleNet V1, V2 
(2018-2019) 

ShuffleNet is a convolutional neural network developed specifically to use on mobile devices with minimal 
processing capacity. The design used two novel operations—pointwise group convolution and channel shuffle—to 
lessen the burden of computing without sacrificing precision. 

DenseNet (2020) 

DenseNet is designed expressly to reverse the reduction in accuracy that high-level neural networks experience 
as a result of the diminishing gradient. This indicates that the information is lost because the journey from the input 

layer to the output layer is so much longer than the length it would take to reach its destination. Dense Net used dense 
blocks in which each layer is connected to each other layer in forward fashion and this technique can alleviate vanishing 
gradient, strengthen feature propagation and encourage feature reuse (Huang et al., 2017). 

V1= Version 1, V2=Version2, V3=Version3, V4=Version4. 
 

11. Potential Use Cases 
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By identifying defective electronic components, automated failure detection technology increases manufacturing 
output and decreases waste and expenses (Sultana et al., 2018). In medical care, image classification facilitates the detection 
of bone fractures, cancer, and tissue abnormalities, thereby enhancing the accuracy of MRI (Lin et al., 2015). In the 
agricultural sector, image classification reduces the need for human intervention by identifying plant maladies and water-
deficient crops (Lin et al., 2015). In the manufacturing process of circuit boards (Lin et al., 2015), defective boards can accrue 
substantial costs; image classification reduces the reliance on human operators to identify defective boards. The various uses 
of image classification showcase its potential to increase productivity, decrease expenses, and improve accuracy across a 
variety of industries. 

 

12. CNN for Image Segmentation 
 

Automated image segmentation is an essential component of computer vision (Sharp et al., 2014), as it simplifies 
analyzing images by dividing an image into segments or collections of pixels assigned to distinct classifications. It removes the 
need for pixel-by-pixel analysis and continuously evolves, alongside new models arising frequently. Figure 11 depicts image 
segmentation, which can be implemented for object detection or image classification. This approach begins by identifying 
"seeds," which are tiny sections used to determine the tile layout. Segmentation aids in recognizing image regions and is 
essential for duties such as identifying plant illnesses, broken bones, and tissue abnormalities in medical care. 

 

                 (a)                 (b)               (c) 
Figure 11 (a) Object classification, (b) Object detection, and (c) Object segmentation (O’Shea, & Nash, 2015). 

 

Using a CNN in a procedure known as region proposal and annotation, semantic segmentation classifies image pixels 
into semantically interpretable classes. Candidate object patches (COMPs) are tiny clusters of pixels that are most likely 
associated with the same object. Instance segmentation identifies each instance of an item, whereas semantic segmentation 
combines all instances of the same class. Semantic segmentation does not designate each pixel in an image, whereas 
instance segmentation distinguishes each item (Minaee et al., 2021). 

 

13. Revolution of CNN for Image Segmentation 
 

13.1. Fully Convolutional Network (FCN) for Segmentation 
 

The advent of a variant of the CNN is known as the fully convolutional network (FCN). This FCN represents a large 
advancement in the field of image segmentation problems. The difference between FCN and the traditional CNN is that the 
completely linked layer at the end of the CNN is replaced by convolution layers, and as a result of this replacement, the 
completed network can be fed with any size of input image and produce the same spatial dimension outputs. Hence, 
the classification network can generate a heatmap of the selected item class. Figure 12 depicts an example of this 
transformation. 

 
Figure 12 FCN for semantic segmentation. 

 

FCNs are not only more flexible because they can take a variety of input image sizes but also more efficient for 
learning dense predictions thanks to in-network upsampling. The FCN may also keep track of the input's spatial information, 
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which is important for semantic segmentation because it requires both classification and localization. Although FCNs can 
accept any size of the input image, nonpadded convolutions can be used to decrease the output resolution; these were 
created to keep the sizes of filters modest and hence reduce the computational cost. The outcome is a coarse output with a 
size reduction equal to the pixel stride of the output units' receptive field. Day times. U-Net networks, as fully convolutional 
networks, can be utilized for this task (Minaee et al., 2021). However, one of the major drawbacks of fully convolutional 
networks is that they require considerable data for accurate learning of image segmentation and localizations, whereas only 
a few datasets are publicly available online. Additionally, the technique of manually labeling each pixel with multiple classes 
is a tiresome and time-consuming operation and mostly comes out with a lack of precision. Hence, FCNs and U-Nets are 
commonly employed in UAV imagery segmentation, as they require datasets of lesser size if they are compared with the 
other algorithms. 

 

13.2. Seg Net 
 

SegNet is a segmentation model comprised of an encoder network, a decoder network, and a pixel-by-pixel 
classification layer. Like VGG16, which consists of thirteen convolutional layers, the encoder network applies low-resolution 
characteristics to high-resolution data maps for pixelwise classification. The decoder utilizes nonlinear upsampling with 
pooling indices generated during the encoder's max-pooling stage. SegNet is distinguished by its innovation. 

 

13.3. PSP Net 
 

PSP Net, a semantic segmentation model, employs a pyramid pooling module (PPM) to address the narrow receptive 
field of convolutional networks such as ResNet, which cannot adequately represent the global context. The PPM pools kernel 
from multiple subregions and sizes for a robust global representation. It quickly gathers features from the entire image, half 
of it, and smaller portions, creating a universal prior. The PPM then joins before the initial feature map, solving the global 
context problem accurately and efficiently (Zhao et al., 2017). 
 

13.4. DeepLab Net 
 

DeepLab Net employs atrous convolution, which extends the field of view of the filters to incorporate more context 
and controls the field of vision. It offers a mechanism for finding the optimal equilibrium across precise localization and 
context integration. Through atrous convolution, inputs are sampled alternately, resulting in a larger output feature map. 
(Chen et al., 2017) The architecture of DeepLab Net employs atrous convolution to accomplish enhanced accuracy and 
resolution in semantic image segmentation, as shown in Figure 13. 

 

 
Figure 13 Atrous convolution (Chen et al., 2017). 

 

13.5. Efficient Net 
 

Following conducting a neural architecture search within the AutoML MNAS framework, Efficient Nets were 
developed by increasing the initial network size, which optimizes accuracy and efficiency for optimal performance. The new 
baseline network employs mobile inverted bottleneck convolution (MBConv) and has a substantially larger FLOP budget (Lee 
et al., 2020), as shown in Figure 14. 
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Figure 14 Efficient Net (Lee et al., 2020). 
 

13.6. Dense Net-C 
 

Dense Nets-C is a variant of Dense Nets-B that uses a compression factor (theta) to minimize the output quantity of 
feature maps. When theta equals 1, it operates as DenseNet-B. When theta is not 1, dense Nets-C alongside theta*m feature 
maps at a layer are generated. Figure 15 depicts the architecture of Dense-Nets (AbdelMaksoud et al., 2020). 

 

 
Figure 15 Dense Net architecture (AbdelMaksoud et al., 2020). 

 

13.7. Link Net 
 

LinkNet is a lightweight neural network for semantic segmentation that can operate in real time on GPUs and 
embedded devices. It utilizes an encoder-decoder design with feature forwarding to transmit information between layers, 
enhancing precision and lowering the number of parameters. The initial block comprises a 7x7 convolution layer and a max-
pool layer, whereas the final block concludes the convolution with a 2D-convolution layer. Full convolution with a 2x2 kernel 
is used as a classifier. Figure 16 illustrates the architectural design. (Chaurasia & Culurciello 2017). 

Table 2 summarizes the concepts of all the abovementioned state-of-the-art models that are used for semantic 
segmentation tasks. 

 

 
Figure 16 LinkNet architecture (Chaurasia & Culurciello 2017). 
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Table 2 Summary of CNN image-segmentation algorithms. 

CNN for Image segmentation Summary 

FCN (V1 Nov 2014), (V2 Mar.2015) 
Adapts various classification nets, converts FC layer to 1x1 Convolution 

layer, only one transpose conv for upsampling 

SegNet (Nov 2015) 
Segmentation models. Encoder, decoder, and pixelwise classification 

layers make up this basic trainable segmentation architecture. 

PSPNet (V1 Dec.2016), (V2 Apr.2017) 
It is a bully encoder-decoder architecture, it uses pooling indices to provide a 
prior global representation that is both efficient and accurate 

DeepLabNet (V1 Dec.2014), (V2Feb.2015), 
(V3 Apr.2015), (V4 Jun.2016) 

It introduces (dilated) Conv and uses Atrous Spatial Pyramid Pooling 
(ASPP) module as well as Conditional Random Field (CRF) 

DenseNets(V1 Nov.2016, V2 Dec.2016,V3 
Oct.2017) 

In denseness each layer receives additional inputs from all preceding 
layers and passes its feature maps to all subsequent layers, it features high 
computational and memory efficiency, strong gradient flow, more diversified 
features, concatenate the output feature maps of the layer with the input 
feature maps instead of adding them together 

E-Net (Jun.2016) 

Compounding scale gives EfficiencNet fast, accurate inference. The 
baseline network strongly influences it. AutoML MNAS neural architecture 
search optimizes accuracy and efficiency for FLOPS. The design uses MBConv 
like MobileNetV2 and MnasNet. 

Link Net (Jun. 2017) 

Link Net recovers spatial information by passing each encoder's input to 
its decoder's output. For autonomous cars, augmented reality, and other 
applications, it is a lightweight deep neural network architecture for semantic 
segmentation. 

V1= Version 1, V2=Version2, V3=Version3, V4=Version4. 
 

14. Review of UAV Image Segmentation 
 

The growing use of UAVs has given researchers a new opportunity for semantic segmentation of UAV images (Su et 
al., 2022). Zhang et al. (2022) presented a new approach for semantically segmenting UAV imagery through a hybrid CNN 
architecture. To enhance segmentation accuracy, the proposed architecture integrates U-Net and ResNet, two prominent 
CNN architectures. ResNet served as the neural network's fundamental architecture and underwent pretraining on ImageNet 
to obtain basic features. The ResNet output is subjected to the attention mechanism to prioritize relevant features for 
segmentation. Yi et al. (2022) utilized a squeeze-and-excitation (SE) block in the attention mechanism to acquire channelwise 
attention weights. These weights are subsequently applied to the feature maps before transmitting them to the decoder. The 
decoder employs upsampling and convolutional layers to enhance the spatial resolution of the feature maps and reduce the 
channel count. The final result is a segmentation map that maintains the spatial resolution of the original image. The 
proposed method was evaluated using the Potsdam and Vaihingen image datasets. The study's findings demonstrate that the 
hybrid approach surpasses the conventional FCN and CNN models, exhibiting superior F1 scores and accuracy. The authors, 
Su et al, Zhang et al, and Yi et al, compared their results with various state-of-the-art models and achieved comparable 
outcomes. Moreover, Yu, Yang, and Chen (2018) proposed the study of a hybrid CNN that integrates multispectral and RGB 
data to perform semantic segmentation of UAV imagery. Furthermore, Li et al. (2023) employed a parallel CNN architecture 
that processed each data type separately and combined the final outputs. This approach outperformed conventional single-
modality CNNs, resulting in more precise segmentation outcomes. 

A study suggested a CNN architecture that merged a preexisting network with a CNN for feature extraction (Liu et al. 
2021). The preexisting network was optimized for semantic segmentation through unmanned aerial vehicle (UAV) imagery. 
The method proposed by Liu et al. (2021) achieved higher segmentation accuracy and reduced training time compared to 
conventional CNNs using pretrained weights. Gebrehiwot et al. (2019) employed image segmentation techniques to 
distinguish flooded water from buildings, vegetation, and roadways in UAV images. Ichim et al. (2020) utilized decision fusion 
and foliage in UAV imagery to segment flooded areas. Zhang et al. (2020) employed residual U-Net modules to segment 
plants in UAV images. 

 

15. U-Net for Image Segmentation 
 

U-Net is an advanced fully convolutional network for the precise segmentation of pixel-based images using a small 
number of training images. Each phase of downsampling doubles the number of feature channels, while each step along the 
expanding route consists of an upsampling of the feature map, a 2x2 convolution that halves the number of feature channels, 
a combination with the trimmed feature map from the contracting route, and two 3x3 convolutions. Every convolution 
results in border pixel loss, necessitating cropping. In the last layer, a 1x1 convolution allocates the appropriate number of 
classes to each 64-component feature vector. As shown in Figure 17, the network's 23 convolutional layers make it suitable 
for segmenting annotated Orth mosaic tiles. 
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Figure 17 U-Net architecture (Cicek et al., 2016). 

 

16. Modification of U-Net 
 

U-Net became available in 2015 for biomedical segmentation, but it can also be used to address a variety of other 
issues. It has been transformed into various structures, such as residual U-Net, 3D-U-Net, U-Net++, improved U-Net3+, 
cascaded U-Net, adversarial U-Net R2U-Net, and attention U-Net. These modifications are based on the architecture of the 
original U-Net. Some of these modified structures are explained as follows. 

 

16.1. 3D-UNet 
 

3D-UNet comprises a contractive and an expanding route that, using a mix of convolution and pooling processes, tries 
to create a bottleneck in its central portion. Following this bottleneck, the picture is recreated using convolutions and 
upsampling. Adding skip connections is intended to facilitate the backward flow of gradients to enhance training. 

3D-UNet consists of a route that is both contracting (left) and growing (right). It employs unpadded convolutions 
followed by maximum pooling for downsampling (Cicek et al., 2016). Every step along the expanding route involves 
upsampling the feature maps and concatenating them with the proportionally cropped feature map from the contractive 
path, as shown in Figure 18. 

 

 
Figure 18 3D-UNet architecture (Cicek et al, 2016). 
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16.2. Residual U-Net (ResU-Net) 
 

ResU-Net employs residual units as its fundamental building block rather than a simple convolutional block. Residual 
units include: 

 Two convolutional 3x3 bloc 
 An identity mapping 
 Identity mapping links the residual unit's input and output. 
 The convolutional block includes one layer of batch normalization, one layer of ReLU activation, and one 

convolutional layer, as shown in Figure 19. 
 

 
Figure 19 Residual U-Net (Vega Arellano, 2022). 

 

The three components of ResU-Net are encoding, bridge, and decoding. It substitutes pooling in the first convolution 
block with a stride of 2. Before each decoding unit, lower-level feature maps are upsampled and concatenated with the 
corresponding encoding route. The segmentation map is generated by a 1x1 convolution with sigmoid activation. As shown in 
Figure 19. 

 

16.3. U-Net++ 
 

U-Net++ comprises an encoder and decoder coupled by a succession of dense convolutional blocks layered within one 
another. The primary goal of U-Net++ is to bridge the semantic gap between the encoder and decoder feature maps before 
fusion (Zhou et al., 2018). In U-Net, the decoder receives the encoder's feature maps directly; however, in U-Net++, they are 
subjected to a dense convolution block whose number of convolution layers is dependent on the pyramid level. 

 

16.4. Adversarial U-Net 
 

Adversarial U-Net is composed of a U-Net for segmentation (generator) and a CNN for feature vectors (discriminator) 
that encode spatial interactions. In contrast to conventional GANs, the discriminator generates multilevel features as 
opposed to binary labels. The architecture is depicted schematically in Figure 20 (Sriker et al., 2021). 

 

 
Figure 20 Adversarial U-Net ((Sriker et al., 2021). 
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The discriminator takes a pixel-by-pixel multiplication of the input image by either the ground truth or the projected 
segmentation map and outputs a feature vector for each input, while the generator generates a segmentation map. 
Discriminator blocks are convolutions. Each block's output is flattened and merged to create a hierarchical vector. 

 

16.5. Cascaded U-Net 
 

Cascaded U-Net is an enhanced cascaded network in which the encoder of the consecutive U-Net is placed between 
the encoder and decoder of the previous U-Net. The inputs that are part of each convolution block of the latter U-Net are 
obtained from three sources: the previous layer's output, the previous U-Net's output at the same level, and the matching 
upsampled output of the lower convolution block of the previous U-Net. This structure enhances segmentation performance 
by enabling the two U-Nets to communicate their learned features, thereby enhancing feature selection and combination, as 
shown in Figure 21. 

 

 
Figure 21 Cascaded U-Net (Jiang et al., 2019). 

 

16.6. Improved U-Net 3+ 
 

U-Net3+ employs full-scale skip connections to mix high-level and low-level semantics from multiple scales to increase 
segmentation accuracy, and its network parameters are less than those of U-Net and U-Net++ (Lefkovits et al.,2022). The 
encoder component of U-Net3+ is identical to that of U-Net and U-Net++. Each encoder comprises two convolutional layers 
with a kernel size of 3. These fundamental networks can enhance performance further. The encoder can extract the image's 
abstract characteristics. The degree of abstraction of characteristics varies between scales. Features with a higher level of 
abstraction are essential for the subsequent network. Table 3 summarizes the concepts of U-Net variants and the differences 
between them. 

 

Table 3 Summary of U-Net Variants. 

MODIFIED U-Net                                        Summary 

3D UNet 
(Jun. 2016) 

3D-UNet comprises a contractive and an expanding route that using a mix of convolution and 
pooling processes, tries to create a bottleneck in its central portion. Adding skip connections is 
intended to facilitate the backward flow of gradients to enhance training (Cicek et al, 2016). 

Residual U-Net 
(Nov.2017) 

Instead of using a standard convolutional block, ResUNet makes use of Residual Units as its 
primary building element. 

U-Net++ 
(Jul 2018) 

U-Net++ begins with an encoder subnetwork or backbone, which is then followed by a decoder 
subnetwork. The redesigned skip paths that connect the two subnetworks and the use of deep 
supervision distinguish U-Net++ from U-Net. Additionally, it uses dense block concepts to improve U-
Net (Zhou et al., 2018). 

Adversarial 
U-Net (May 2019) 

The Adversarial U-Net consists of the previously described U-Net to produce segmentation 
maps (the generator) and a CNN to generate multilevel feature vectors (the discriminator) (Li et 
al,2019). 

Cascaded U-Net 
(MAY 2020) 

A cascaded U-Net is an improved cascaded network in which the encoder of the next U-Net is 
positioned between the encoder and decoder of the previous U-Net, rather than at the end of the 
previous U-Net. 

Improved 
U-Net3+ 
(Jan.2022) 

To improve its segmentation accuracy, U-Net3+ uses full-scale skip connections to combine 
high-level and low-level semantics across various scales. Its network parameters are also less than 
those of U-Net and U-Net++. U-Net3+ shares an encoder with U-Net and U-Net++(Lefkovits et 
al.,2022). 

 

17. U-Net for UAV Image Segmentation 
 

Utilizing deep neural network-based strategies in environmental methodologies empowers the execution of diverse 
tasks, particularly notable in image segmentation tasks involving data such as UAV-acquired images. These operations 
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employ various types of sensors depending on the nature of the task. To map natural habitats and their properties, reviews 
concentrate on techniques and systems explicitly about the objectives; as such, no globally applicable model could be 
developed or inferred. Even though deep learning-related strategies have not arrived at this kind of globally applicable 
model, they are effectively clearing doubts by being effectively executed in the most exceptional situations. However, 
although UAV-related techniques provide a few limitations to object classification and regression operations, deep neural 
network strategies are being increasingly perceived as more suitable for performing such undertakings. In any case, there is 
still much to be explored. 

The most widely recognized applications in the context of ecological image segmentation tasks are land cover, land 
use, and different formats of landscape examination. A new report by Giang et al. (2020) applied semantic-segmentation 
models to evaluate land use over a mining extraction region. Additionally, Al-Najjar et al. (2019) consolidated data from a 
digital surface model (DSM) with UAV-related RGB format pictures and implemented a variant of feature combination as 
input for a convolutional neural network architecture. To plan seaside areas, a methodology by Buscombe et al. (2018), with 
RGB-format image data enlisted with different scales, utilized a convolutional neural network with a graphical technique 
referred to as conditional random field (CRF). Furthermore, an additional study by Park et al. (2020), with hyperspectral 
image data between a mixture of 2-dimensional and 3-dimensional convolution layers, was created to deduce the variation in 
land cover within the allocated land classification of cadastral-map packages. Owing to advancements in image-capturing 
systems, it is possible to obtain hyperspectral images through UAVs. An incredible number of spectral bands are contained in 
these images. 

The task of multiclass segmentation poses a significant challenge in unmanned aerial vehicle (UAV) image 
segmentation, as it necessitates partitioning an image into more than two distinct classes (Ling et al., 2022). In recent years, 
U-Net has been utilized for the multiclass segmentation of UAV images and has demonstrated promising outcomes. Zhang et 
al. (2020) proposed a U-Net architecture for multiclass crop segmentation on unmanned aerial vehicle (UAV) images. The 
study yielded a cumulative precision rate of 94.6% across six distinct crop varieties. The researchers employed data 
augmentation methodologies, including rotation and magnification, to augment the variety of data employed for training and 
improve the model's generalizability. 

Huang et al. (2020) proposed a modified U-Net model to address the task of multiclass land cover segmentation in 
UAV images. The research's overall precision for eight distinct land cover categories was 89.9%. The authors enhanced the U-
Net architecture by integrating residual connections and spatial pyramid aggregating, increasing the model's efficacy. Zhang 
et al. (2022) conducted a study wherein a U-Net model was utilized for multiclass crop segmentation in UAV images. The 
study yielded a combined precision rate of 94.2% for four distinct varieties of crops. The researchers employed a hybrid loss 
function that integrated the Dice loss and cross-entropy loss to mitigate the class imbalance issue and augment the model's 
efficacy. Limitations arise when employing the U-Net architecture for semantic segmentation tasks involving over 20 classes. 

The U-Net model features a symmetrical encoder-decoder design incorporating skip connections and a limited 
receptive field. The receptive field of a network is limited as its depth increases. The restricted receptive field can hinder the 
capture of contextual information and long-range dependencies in complex scenes with numerous classes, leading to 
imprecise segmentation. Class imbalance is more likely with over 20 classes. Imbalanced training data may occur due to 
variations in the number of pixels across different classes. The model's capacity to segment minority classes may be 
compromised due to an imbalance, as the network may prioritize training on majority classes. The computational challenge 
of the segmentation task increases with the number of classes. The U-Net architecture's parameter counts increase with the 
number of classes, resulting in higher memory and computational needs. Training a U-Net model with numerous classes can 
be computationally expensive and necessitate significant hardware resources. 

The U-Net architecture utilizes an encoder-decoder structure that involves downsampling in the encoder and 
upsampling in the decoder, decreasing spatial resolution. The resolution of the segmented output may decrease with an 
increase in the number of classes due to repeated pooling and upsampling operations. Reduced spatial resolution may lead 
to fuzzy segmentation and challenges in capturing intricate or small structures. Annotating training data for many classes is a 
time-consuming and error-prone process. Acquiring a precise and well-labeled dataset for training the U-Net model can be 
challenging for uncommon or intricate classes. 

Nevertheless, there are still research gaps in the literature on applying U-Net for multiclass segmentation in 
unmanned aerial vehicle (UAV) scenarios. One of the main challenges in the multiclass segmentation of UAV images is the 
scarcity of annotated datasets (Ling et al., 2022). The creation of annotated datasets can be a resource-intensive and time-
consuming process, which can limit the availability of datasets suitable for training and evaluating U-Net models. 
Furthermore, the generalization of U-Net models to diverse environmental conditions and unmanned aerial vehicle (UAV) 
platforms poses a challenge (Majidizadeh, Hasani, and Jafari, 2023). The quality and reliability of segmentation results can be 
affected by the variation in resolution, perspective, and illumination of images obtained through UAVs (Wang, 2022). To 
surmount these challenges, scholars may explore diverse methodologies to enhance the efficacy and versatility of U-Net for 
the multiclass segmentation of unmanned aerial vehicle (UAV) images. The techniques employed in this context may 
encompass transfer learning, amalgamating numerous U-Net models, and data augmentation (Tian, Zhong, and Chen, 2021). 
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The U-Net architecture is a powerful tool for performing multiclass segmentation of images captured by unmanned 
aerial vehicles (UAVs). The efficacy of this approach has been demonstrated in various applications, such as the classification 
of crops and land cover. Nonetheless, research gaps require attention, including the constrained accessibility of annotated 
datasets and the necessity for U-Net models to achieve generalization (Guo, Zhao, and Wu, 2020). 
 

18. Data collection and available UAV image datasets 
 

In general, the availability of large, real datasets is essential for successful training and testing of the model. Owing to 
the large number of parameters in U-Net, the result cannot be assured unless the model is trained very well by a large set of 
samples before deploying this model to the real world. Studies have previously proven that data augmentation is effective in 
the training of network models, so samples for network training can be added by applying different types of data 
augmentation techniques based on the real scene. 

A review of publicly available UAV image datasets is conducted to obtain an appropriate dataset for the proposed case 
study, which is UAV image multiclass semantic segmentation. Thus, a brief exploration of the available datasets online is 
presented along with their advantages, disadvantages, and challenges. See Appendix 2. 

 

19. Summary 
 

In summary, the concepts listed in this chapter cover the up-and-coming subjects in the field of computer vision, and 
incorporating an aggregation of these topics can provide incredible advancements and assist in the development of modern 
methods for the application of UAV image processing. With an examination of various domains, the development and 
enhancement of more modern and efficient methods can be accomplished. Additional research within the field of UAV image 
processing may find these advancements advantageous, as they can be applied to different tasks and operations. 

 UAV images have a high resolution. The automation of map creation and the semantic segmentation of UAV images 
are difficult tasks in semantic segmentation. Due to some challenges in UAV images, the semantic segmentation procedure 
cannot provide accurate information on UAV images. Therefore, the U-Net architecture technique is proposed to resolve this 
issue. It is divided into two categories. The compression path (also known as the encoder) is the initial path and is responsible 
for capturing the image's context. A convolutional and maximum pooling layer stack constitutes the encoder. The second 
method utilized to provide precise localization via transposed convolutions is the symmetric expanding path (also known as 
the decoder). This job is frequently referred to as dense prediction, which involves neurons that are entirely interconnected 
with one another and with the neurons that gave birth to dense layers. Therefore, it is an end-to-end fully convolutional 
network (FCN), meaning that it has only convolutional layers and no dense layers, allowing it to accept images of any size. 

Semantic segmentation has significantly progressed with deep learning algorithms and hyperparameter optimization 
strategies. This study aims to improve the semantic segmentation performance of UAV images by utilizing convolutional 
neural networks (CNNs) and selecting the U-Net model as the optimal algorithm for this task. Recognizing and classifying 
objects is a crucial aspect of autonomous flight. Therefore, by integrating deep learning algorithms such as U-Net into the 
internal control unit of UAVs, their autonomous piloting capabilities and practical security can be greatly enhanced. The study 
has yielded valuable findings on the difficulties and possible remedies for improving the semantic segmentation of UAV 
images and its potential implications for flight autonomy. Figures 22 and 23 below show the role of the proposed U-Net 
model in improving the process of UAV image semantic segmentation for this project, and it will be presented and discussed 
thoroughly and profoundly. 

 

 
Figure 22 Schematic diagram of UAV image semantic segmentation using a deep learning algorithm based on U-Net architecture. 

 

 

 

 

Figure 23 Process of UAV image semantic segmentation using the improved U-Net architecture. 
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