• Abstract

    Culex mosquitoes are important vectors of several pathogens that cause serious diseases. This study aimed to assess the effects of seasonal variation and meteorological factors on the population dynamics and wing phenotypic plasticity of Culex mosquitoes within coconut plantations in central Thailand. A total of 8,967 mosquitoes were collected, comprising 5,501 Culex sitiens, 3,464 Culex gelidus, and two Culex quinquefasciatus. Owing to the very low number of Cx. quinquefasciatus specimens, this species was excluded from further analyses. The highest mosquito abundance was recorded during the rainy season. Notably, Cx. gelidus exhibited a pronounced peak abundance in September, whereas Cx. sitiens reached its maximum abundance in May. A generalized linear model was applied to examine the influence of atmospheric pressure, rainfall, relative humidity, temperature, and wind speed on mosquito abundance. None of the variables had a significant effect (p > 0.05). Seasonal variation significantly influences wing phenotypic plasticity in Cx. gelidus and Cx. sitiens, with the largest average wing sizes observed in the cool season and the smallest in the rainy or hot seasons. All the seasonal populations of Cx. sitiens differed significantly in wing shape (p < 0.05). In Cx. gelidus, significant differences in wing shape occurred between the cool season and the hot and rainy seasons (p < 0.05) but not between the hot and rainy seasons (p > 0.05). These findings provide critical insights for improving mosquito-borne disease surveillance and enhancing targeted vector control strategies.

  • References

    1. Abdulloh, A., & Chaiphongpachara, T., & Laojun, S. (2024a). Assessing the climatic impacts on abundance of Mansonia annulifera, Ma. indiana, and Ma. uniformis (Diptera: Culicidae) in Central Thailand. Biodiversitas, 25, 4736–4744. https://doi.org/10.13057/biodiv/d251209
    2. Abdulloh, A., Laojun, S., Sineewanlaya, W., Villarroel, P. M. S., & Chaiphongpachara, T. (2024b). Environmental dynamics and seasonal wing physiological changes of coastal mosquito vectors. Journal of Asia-Pacific Entomology, 27(2), 102228.
    3. Abu Hassan, A., Hamady, D., Tomomitsu, S., Michael, B., & Jameel, S. L. A. S. (2010). Breeding patterns of the JE vector Culex gelidus and its insect predators in rice cultivation areas of northern peninsular Malaysia. Tropical Biomedicine, 27(3), 404–416.
    4. Arnqvist, G., & Mårtensson, T. (1998). Measurement error in geometric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape. Acta Zoologica Academiae Scientiarum Hungaricae, 44, 73–96.
    5. Barreaux, A. M. G., Stone, C. M., Barreaux, P., & Koella, J. C. (2018). The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasites & Vectors, 11, 485. https://doi.org/10.1186/s13071-018-3058-3
    6. Bashar, K., & Tuno, N. (2014). Seasonal abundance of Anopheles mosquitoes and their association with meteorological factors and malaria incidence in Bangladesh. Parasites & Vectors, 7, 442. https://doi.org/10.1186/1756-3305-7-442
    7. Campbell-Lendrum, D., Manga, L., Bagayoko, M., & Sommerfeld, J. (2015). Climate change and vector-borne diseases: What are the implications for public health research and policy? Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), 20130552. https://doi.org/10.1098/rstb.2013.0552
    8. Carvajal, T. M., Hernandez, L. F., Ho, H. T., Cuenca, M. G., Orantia, B. M., Estrada, C. R., Viacrusis, K. M., Amalin, D. M., & Watanabe, K. (2016). Spatial analysis of wing geometry in dengue vector mosquito, Aedes aegypti (L.) (Diptera: Culicidae), populations in metropolitan Manila, Philippines. Journal of Vector Borne Diseases, 53(2), 127–135.
    9. Chaiphongpachara, T., & Laojun, S. (2019). Annual variability of wing morphology in Culex sitiens Wiedemann (Diptera: Culicidae) mosquito vectors from the coastal area of Samut Songkhram Province, Thailand. Journal of Parasitology Research, 2019, 3978965. https://doi.org/10.1155/2019/3978965
    10. Chaiphongpachara, T., Laojun, S., Changbunjong, T., Sineewanlaya, W., & Villarroel, P. M. S. (2024a). Demographic inference from the mt-DNA COI gene and wing geometry of Culex gelidus (Diptera: Culicidae), an important vector of Japanese encephalitis in Thailand. Acta Tropica, 256, 107276. https://doi.org/10.1016/j.actatropica.2024.107276
    11. Chaiphongpachara, T., Laojun, S., Sumruayphol, S., Suwandittakul, N., Suwannarong, K., & Pimsuka, S. (2024b). Investigating the impact of climate and seasonality on mosquito (Diptera: Culicidae) vector populations in the connecting areas of the Tenasserim range forests in Thailand. Acta Tropica, 259, 107380. https://doi.org/10.1016/j.actatropica.2024.107380
    12. Chaiphongpachara, T., & Sumruayphol, S. (2017). Species diversity and distribution of mosquito vectors in coastal habitats of Samut Songkhram Province, Thailand. Tropical Biomedicine, 34, 524–532.
    13. Chaiphongpachara, T., Yusuk, P., Laojun, S., & Kunphichayadecha, C. (2018). Environmental factors associated with mosquito vector larvae in a malaria-endemic area in Ratchaburi Province, Thailand. Scientific World Journal, 2018, 4519094. https://doi.org/10.1155/2018/4519094
    14. Chonephetsarath, S., Raksakoon, C., Sumruayphol, S., Dujardin, J. P., & Potiwat, R. (2021). The unequal taxonomic signal of mosquito wing cells. Insects, 12(5), 376. https://doi.org/10.3390/insects12050376
    15. da Cruz Ferreira, D. A., Degener, C. M., de Almeida Marques-Toledo, C., Bendati, M. M., Fetzer, L. O., Teixeira, C. P., & Eiras, Á. E. (2017). Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. Parasites & Vectors, 10(1), 78. https://doi.org/10.1186/s13071-017-2025-8
    16. Dodson, B. L., Kramer, L. D., & Rasgon, J. L. (2012). Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasites & Vectors, 5, 199. https://doi.org/10.1186/1756-3305-5-199
    17. Dujardin, S., & Dujardin, J. P. (2019). Geometric morphometrics in the cloud. Infection, Genetics and Evolution, 70, 189–196. https://doi.org/10.1016/j.meegid.2019.02.018
    18. García-Suárez, O., Tolsá-García, M. J., Arana-Guardia, R., Rodríguez-Valencia, V., Talaga, S., Pontifes, P. A., Machain-Williams, C., Suzán, G., & Roiz, D. (2024). Seasonal mosquito (Diptera: Culicidae) dynamics and the influence of environmental variables in a land use gradient from Yucatan, Mexico. Acta Tropica, 257, 107275. https://doi.org/10.1016/j.actatropica.2024
    19. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9.
    20. Harbach, R. E. (2025). Mosquito Taxonomic Inventory. https://mosquito-taxonomic-inventory.myspecies.info/ (Accessed on February 15, 2025)
    21. Hidalgo, K., Dujardin, J. P., Mouline, K., Dabiré, R. K., Renault, D., & Simard, F. (2015). Seasonal variation in wing size and shape between geographic populations of the malaria vector, Anopheles coluzzii in Burkina Faso (West Africa). Acta Tropica, 143, 79–88. https://doi.org/10.1016/j.actatropica.2014.12.014
    22. Kaufmann, C., Collins, L. F., & Brown, M. R. (2013). Influence of age and nutritional status on flight performance of the Asian tiger mosquito Aedes albopictus (Diptera: Culicidae). Insects, 4, 404–412. https://doi.org/10.3390/insects4030404
    23. Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
    24. Krol, L., Blom, R., Dellar, M., van der Beek, J. G., Stroo, A. C. J., van Bodegom, P. M., Geerling, G. W., Koenraadt, C. J. M., & Schrama, M. (2023). Interactive effects of climate, land use and soil type on Culex pipiens/torrentium abundance. One Health, 17, 100589. https://doi.org/10.1016/j.onehlt.2023.100589
    25. Laojun, S., Changbunjong, T., Abdulloh, A., & Chaiphongpachara, T. (2024). Geometric morphometrics to differentiate species and explore seasonal variation in three Mansonia species (Diptera: Culicidae) in central Thailand and their association with meteorological factors. Medical and Veterinary Entomology, 38(3), 325–340. https://doi.org/10.1111/mve.12720
    26. Manouana, G. P., Sarah-Matio, E.-M., Hellhammer, F., Zahouli, J. Z. B., Tapé, A. S. B., Biré, Y. N., Dibo, J.-D. K., Houriaaidji, G. E., Maganga, G. D., Koumba, J. P., Zinsou, J. F., Ongouta-Mafia, G. C., Boussougou-Sambe, T. S., Djogbenou, L. S., Medjigbodo, A., Djihinto, O., Mavoungou, J. F., Mintsa-Nguema, R., Adegnika, A. A., ... Becker, S. C. (2024). Ecology of arboviruses and their potential mosquito vectors in Benin, Côte d’Ivoire and Gabon: A mini review. Frontiers in Tropical Diseases, 5, 1355778. https://doi.org/10.3389/fitd.2024.1355778
    27. Moser, S. K., Barnard, M., Frantz, R. M., Spencer, J. A., Rodarte, K. A., Crooker, I. K., Bartlow, A. W., Romero-Severson, E., & Manore, C. A. (2023). Scoping review of Culex mosquito life history trait heterogeneity in response to temperature. Parasites & Vectors, 16(1), 200. https://doi.org/10.1186/s13071-023-05792-3
    28. Nik Abdull Halim, N. M. H., Che Dom, N., Dapari, R., Salim, H., & Precha, N. (2022). A systematic review and meta-analysis of the effects of temperature on the development and survival of the Aedes mosquito. Frontiers in Public Health, 10, 1074028. https://doi.org/10.3389/fpubh.2022.1074028
    29. Onen, H., Luzala, M. M., Kigozi, S., Sikumbili, R. M., Muanga, C. K., Zola, E. N., Wendji, S. N., Buya, A. B., Balciunaitiene, A., Viškelis, J., Kaddumukasa, M. A., & Memvanga, P. B. (2023). Mosquito-borne diseases and their control strategies: An overview focused on green synthesized plant-based metallic nanoparticles. Insects, 14(3), 221. https://doi.org/10.3390/insects14030221
    30. Panda, D., Pandit, R. S., Sahu, B., Kamaraju, R., & Barik, T. K. (2024). Understanding mosquito faunal diversity: An approach to assess the burden of vector-borne diseases in three representative topographies (Rural, Urban, and Peri-Urban) of Ganjam District in Odisha State, India. Journal of Tropical Medicine, 2024, 9701356. https://doi.org/10.1155/2024/9701356
    31. Prummongkol, S., Panasoponkul, C., Apiwathnasorn, C., & Lek-Uthai, U. (2012). Biology of Culex sitiens, a predominant mosquito in Phang Nga, Thailand after a tsunami. Journal of Insect Science, 12, 11. https://doi.org/10.1673/031.012.1101
    32. Rattanarithikul, R., Harbach, R. E., Harrison, B. A., Panthusiri, P., Jones, J. W., & Coleman, R. E. (2005). Illustrated keys to the mosquitoes of Thailand. II. Genera Culex and Lutzia. Southeast Asian Journal of Tropical Medicine and Public Health, 36(Suppl 2), 1–97.
    33. Reinhold, J. M., Lazzari, C. R., & Lahondère, C. (2018). Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A review. Insects, 9(4), 158. https://doi.org/10.3390/insects9040158
    34. Seah, A., Aik, J., & Ng, L. C. (2021). Effect of meteorological factors on Culex mosquitoes in Singapore: A time series analysis. International Journal of Biometeorology, 65, 963–965. https://doi.org/10.1007/s00484-020-02059-9
    35. Soh, S., & Aik, J. (2021). The abundance of Culex mosquito vectors for West Nile Virus and other flaviviruses: A time-series analysis of rainfall and temperature dependence in Singapore. Science of The Total Environment, 754, 142420. https://doi.org/10.1016/j.scitotenv.2020.142420
    36. Sudeep, A. B., Ghodke, Y. S., George, R. P., Ingale, V. S., Dhaigude, S. D., & Gokhale, M. D. (2015). Vectorial capacity of Culex gelidus (Theobald) mosquitoes to certain viruses of public health importance in India. Journal of Vector Borne Diseases, 52, 153–158.
    37. Suesdek, L. (2019). Microevolution of medically important mosquitoes – A review. Acta Tropica, 191, 162–171. https://doi.org/10.1016/j.actatropica.2018.12.013
    38. Tuladhar, R., Singh, A., Banjara, M. R., Gautam, I., Dhimal, M., Varma, A., & Choudhary, D. K. (2019). Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal. Parasites & Vectors, 12(1), 42. https://doi.org/10.1186/s13071-019-3304-3

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Laojun, S., Sumruayphol, S., & Chaiphongpachara, T. (2025). Influences of meteorological factors and seasonality on the population dynamics and wing plasticity of <em>Culex</em> mosquitoes (Diptera: Culicidae) in coconut plantations in central Thailand. Journal of Animal Behaviour and Biometeorology, 13(2), 2025017. https://doi.org/10.31893/jabb.2025017
  • Article viewed - 189
  • PDF downloaded - 79