• Abstract

    Understanding how dairy heifers respond to different roofing materials in humid tropical climates is critical for improving their welfare and productivity. This study analyzed dairy heifer’s behavioral and thermoregulatory responses under different roofing materials in a humid tropical climate. The study involved five growing heifers, each under two years old and averaging 210 kg in body weight. Two roofing materials were tested: a conventional roof (CR) made from asbestos and a modified roof (MR) constructed with layers of UPVC, aluminum foil, and rock wool. The heifers underwent a two-week adaptation in CR, followed by one week of data collection. They then transitioned to MR for another two weeks of adaptation and subsequent data collection. The data collected included behavior observations (lying, standing, and lying bout frequency) and thermoregulatory responses (rectal temperature, respiration, and heart rate). The results showed that the average lying and standing time behaviors were differed significantly between two roof materials (p<0.05). The ambient temperatures tended to be lower in MR, especially during noon and the afternoon. Roof surface temperatures were significantly reduced by 27–32% (p<0.05) compared to CR. The study indicated mild to moderate heat stress, with overall means showing significant differences in rectal temperature, heart rate, and respiration rate (p<0.05), consistently lower in MR than CR. Modifying roof materials demonstrates a better microenvironment, improves the comfort and productivity of heifers under humid tropical climate and is important for sustainable dairy production in tropical regions.

  • References

    1. Akins MS. (2016). Dairy heifer development and nutrition management. Veterinary Clinics of North America: Food Animal Practice, 32(2), 303–317.
    2. Al-Sanea SA. (2004). Thermal performance of hordi roofs in a hot-dry climate. Journal of King Saud University - Engineering Sciences, 17(1), 101–120.
    3. Andrade, M. (2025). Solar reflectance of cool concrete and fiber cement tiles and thermal performance analysis. Ambient Construído, 25(1). https://doi.org/10.1590/s1678-86212025000100892
    4. Antanaitis R, Džermeikaitė K, Krištolaitytė J, Ribelytė I, Bespalovaitė A, Bulvičiūtė D, Palubinskas G, Anskienė L. (2024). The impacts of heat stress on rumination, drinking, and locomotory behavior, as registered by innovative technologies, and acid–base balance in fresh multiparous dairy cows. Animals, 14(8), 1169. https://doi.org/10.3390/ani14081169
    5. Armstrong DV. (1994). Heat stress interaction with shade and cooling. Journal of Dairy Science, 77(7), 2044–2050.
    6. Asmarasari SA, Azizah N, Sutikno S, Puastuti W, Amir A, Praharani L, Rusdiana S, Hidayat C, Hafid A, Kusumaningrum DA, Saputra F, Talib C, Herliatika A, Shiddieqy MI, Hayanti SY. (2023). A review of dairy cattle heat stress mitigation in Indonesia. Veterinary World. https://doi.org/10.14202/vetworld.2023.1098-1108
    7. Badan Pusat Statistik. (2024). Livestock in statistics. https://www.bps.go.id/id/publication/2023/12/22/5927b06e1dcde219f76cec59/peternakan-dalam-angka-2023.html (Accessed on December 8, 2024)
    8. Beaver A, Strazhnik E, von Keyserlingk MAG, Weary DM. (2021). The Freestall reimagined: Effects on stall hygiene and space usage in dairy cattle. Animals, 11(6), 1711. https://doi.org/10.3390/ani11061711
    9. Blackshaw JK, Blackshaw AW. (1994). Heat stress in cattle and the effect of shade on production and behaviour: a review. Australian Journal of Experimental Agriculture, 34(3), 285–295.
    10. Brezov, D., Hristov, H., Dimov, D., & Alexiev, K. (2023). Predicting the rectal temperature of dairy cows using infrared thermography and multimodal machine learning. Applied Sciences, 13(20), 11416. https://doi.org/10.3390/app132011416
    11. Cartwright SL, Schmied J, Karrow N, Mallard BA. (2023). Impact of heat stress on dairy cattle and selection strategies for thermotolerance: a review. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2023.1198697
    12. Cassimiro, I. (2025). Thermal and optical characterization of polycarbonate reflectors doped with titanium dioxide using thermography. Materials, 18(7), 1628. https://doi.org/10.3390/ma18071628
    13. Charlton GL, Bouffard V, Gibbons J, Vasseur E, Haley DB, Pellerin D, Rushen J, Passille AM. (2016). Can automated measures of lying time help assess lameness and leg lesions on tie-stall dairy farms? Applied Animal Behaviour Science. https://doi.org/10.1016/j.applanim.2015.02.011
    14. Chen L, Thorup VM, Kudahl AB, Østergaard S. (2024). Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. Journal of Dairy Science. https://doi.org/10.3168/jds.2023-24059
    15. Collier RJ, Renquist BJ, Xiao Y. (2017). A 100-Year Review: Stress physiology including heat stress. Journal of Dairy Science. https://doi.org/10.3168/jds.2017-13676
    16. de Oliveira, D., & Keeling, L. J. (2018). Routine activities and emotion in the life of dairy cows: Integrating body language into an affective state framework. PLoS ONE, 13(5), e0195674. https://doi.org/10.1371/journal.pone.0195674
    17. Despal, F., Faresty, C., Zahera, R., & Toharmat, R. (2022). The feeding behavior of dairy cattle under tropical heat stress conditions at smallholder urban farming. Biodiversitas, 23(7), Article 753. https://doi.org/10.13057/biodiv/d230753
    18. Dikmen, S., & Hansen, P. J. (2019). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science. https://doi.org/10.3168/jds.2008-1370
    19. Dißmann, L., Heinicke, J., Jensen, K. C., Amon, T., & Hoffmann, G. (2022). How should the respiration rate be counted in cattle? Veterinary Research Communications. https://doi.org/10.1007/s11259-022-09984-7
    20. European Food Safety Authority (EFSA). (2009). Scientific report of EFSA prepared by the Animal Health and Animal Welfare Unit on the effects of farming systems on dairy cow welfare and disease. EFSA Journal, 1143, 1–284. https://doi.org/10.2903/j.efsa.2009.1143r
    21. European Food Safety Authority. (2009). Scientific report of EFSA prepared by the Animal Health and Animal Welfare Unit on the effects of farming systems on dairy cow welfare and disease (EFSA Journal No. 1143r). https://doi.org/10.2903/j.efsa.2009.1143r
    22. FAO. (2023). Dairy Market Review – Emerging trends and outlook in 2023. https://openknowledge.fao.org/server/api/core/bitstreams/68f7f25d-b3cb-418e-b04d-5708e5bcea1e/content. Accessed November 15, 2024.
    23. Gautam, V. N., Shrivastava, S., Lakhani, G. P., & Tripathi, K. N. (2020). Emendation of performance in dairy animals using modified roof: A review. Journal of Entomology and Zoology Studies, 8(3), 1007–1011.
    24. Herbut, P., & Angrecka, S. (2018). Relationship between THI level and dairy cows’ behaviour during summer period. Italian Journal of Animal Science. https://doi.org/10.1080/1828051X.2017.1333892
    25. Hong, H., Lee, E., Lee, I., & Lee, S. (2019). Effects of transport stress on physiological responses and milk production in lactating dairy cows. Animal Bioscience, 32(3), 442–451. https://doi.org/10.5713/ajas.18.0108
    26. Ito, K., Keyserlingk von, M. A. G., LeBlanc, S. J., & Weary, D. M. (2010). Lying behavior as an indicator of lameness in dairy cows. Journal of Dairy Science. https://doi.org/10.3168/jds.2009-2951
    27. Janni, K. A., Nelson, C. R., Heins, B. J., & Sharpe, K. (2023). Dairy Cow Thermal Balance Model During Heat Stress: Part 2. Model Assessment. Journal of American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/ja.15191
    28. Jurkovich, V., Hejel, P., & Kovács, L. (2024). A Review of the Effects of Stress on Dairy Cattle Behaviour. Animals. https://doi.org/10.3390/ani14142038
    29. Lefcourt, A. M., Erez, B., Varner, M. A., Barfield, R., & Tasch, U. (1999). A noninvasive radiotelemetry system to monitor heart rate for assessing stress responses of bovines. Journal of Dairy Science, 82(11), 2424–2430. https://doi.org/10.3168/jds.S0022-0302(99)75341-5
    30. Levinson, R., Berdahl, P., Berhe, A. A., & Akbari, H. (2005). Effects of soiling and cleaning on the reflectance and solar heat gain of a light colored roofing membrane. Atmospheric Environment, 39(40), 7807–7824. https://doi.org/10.1016/j.atmosenv.2005.08.037
    31. Liu, J., Li, L., Chen, X., Lu, Y., & Wang, D. (2019). Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: a novel idea for monitoring and evaluation of heat stress — A review. Asian-Australasian Journal of Animal Sciences, 32(11), 1622–1632. https://doi.org/10.5713/ajas.18.0743
    32. Lovarelli, D., Minozzi, G., Arazi, A., Guarino Marcella, & Tiezzi, F. (2024). Effect of extended heat stress in dairy cows on productive and behavioral traits. Animal. https://doi.org/10.1016/j.animal.2024.101089
    33. Meneses, J. A. M., de Sá, O. A. A. L., Coelho, C. F., Pereira, R. N., Batista, E. D., Ladeira, M. M., Casagrande, D. M., & Gionbelli, M. P. (2021). Effect of heat stress on ingestive, digestive, ruminal and physiological parameters of Nellore cattle. Livestock Science, 249, 104676. https://doi.org/10.1016/j.livsci.2021.104676
    34. Mirje, U., Gouri, M. D., Vivek, M. P., Umashankar, B. C., Manjunatha, L., Basavaraj Inamdar, & Raghavendra G Prasanna, S. B. (2022). Study of basic behavioural patterns in lactating dairy buffaloes under intensive system of farming. The Pharma Innovation Journal, 11(4), 1437–1440.
    35. Mitchell, B. S. (2003). An Introduction to Materials Engineering and Science: For Chemical and Materials Engineers. Wiley. https://doi.org/10.1002/0471473359
    36. Mitsubishi Engineering Plastics Corporation. (2025). Iupilon™ high thermal conductive polycarbonate resin: Technical data sheet. Retrieved from https://www.m-ep.co.jp/en/product/kinou/thermally-conductive03.html
    37. Mobley, R. K. (2001). Plant engineer's handbook. Butterworth-Heinemann.
    38. Mohr, E., Langbein, J., & Nürnberg, G. (2002). Heart rate variability: a noninvasive approach to measure stress in calves and cows. Physiology & Behavior, 77(4–5), 607–612. https://doi.org/10.1016/S0031-9384(01)00651-5
    39. Narwaria, U. S., Singh, M., & Kumar, V. K. (2024). Amelioration of Thermal Stress using Modified Roof in Dairy Animals under Tropics: A Review. Journal of Animal Research. https://doi.org/10.5958/2277-940X.2017.00124.3
    40. NRC. (1971). A Guide to Environmental Research on Animals. National Academies Press (US). https://nap.nationalacademies.org/catalog/20608/a-guide-to-environmental-research-on-animals. Accessed October 3, 2024.
    41. Onyeaju, M. C., Osarolube, E., Chukwuocha, E. O., Ekuma, C. E., & Omasheye, G. A. J. (2012). Comparison of the thermal properties of asbestos and polyvinylchloride (PVC) ceiling sheets. Materials Sciences and Applications, 3(04), 35. https://doi.org/10.4236/msa.2012.34035
    42. Pandey, P., Hooda, O. K., & Kumar, S. (2017). Impact of heat stress and hypercapnia on physiological, hematological, and behavioral profile of Tharparkar and Karan Fries heifers. Veterinary World, 10(11), 1146–1155. https://doi.org/10.14202/vetworld.2017.1146-1155
    43. Poyyamozhi, M., Murugesan, B., Narayanamoorthi, R., Abinaya, T. L., Shorfuzzaman, M., & Aboelmagd, Y. (2024). Sustainable Concrete Roof Tiles: Integrating Aluminium Foil, Fly Ash, Solar PV, and Management. Sustainability, 16(18), 8257. https://doi.org/10.3390/su16188257
    44. Solano, L., Barkema, H. W., Pajor, E. A., Mason, S., LeBlac, S. J., Nash, C. G. R., Haley, D. B., Pellerin, D., Rushen, J., Passelle, & Vassuer, E. (2015). Associations between lying behavior and lameness in Canadian Holstein-Friesian cows housed in freestall barns. Journal of Dairy Science, 98(11), 8272–8282. https://doi.org/10.3168/jds.2015-10336
    45. Srikandakumar, A., & Johnson, E. H. (2004). Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian milking Zebu cows. Tropical Animal Health and Production, 36(6), 487–498. https://doi.org/10.1023/b:trop.0000042868.76914.a9
    46. Statistic Bureau. (2024). Peternakan Dalam Angka. https://www.bps.go.id/id/publication/2023/12/22/5927b06e1dcde219f76cec59/peternakan-dalam-angka-2023.html. Accessed December 8, 2024.
    47. Tosetto, M. R., Maia, A. P., Sarubbi, J. A., Zancanaro, B. M. D., de Lima, C. Z., & Sippert, M. R. (2014). Influence of macro-and microclimatic conditions on thermal comfort of dairy cows. Journal of Animal Behaviour and Biometeorology, 2(1), 1–10. https://doi.org/10.14269/2318-1265.v02n01a02
    48. Tresoldi, G., Weary, D. M., Pinheiro Machado Filho, L. C., & von Keyserlingk, M. A. (2015). Social licking in pregnant dairy heifers. Animals, 5(4), 404–415. https://doi.org/10.3390/ani5040404
    49. Tucker, C. B., Jensen, M. B., de Passillé, A. M., Hänninen, L., & Rushen, J. (2021). Invited review: Lying time and the welfare of dairy cows. Journal of Dairy Science, 104(10), 10260–10276. https://doi.org/10.3168/jds.2019-18074
    50. Wang, J., Li, J., Wang, F., Xiao, J., Wang, Y., Yang, H., Li, S., & Zhijun, C. (2020). Heat stress on calves and heifers: a review. Journal of Animal Science and Biotechnology, 11(1), 1–10. https://doi.org/10.1186/s40104-020-00485-8
    51. West, J. W. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86(1), 213–224. https://doi.org/10.3168/jds.S0022-0302(03)73806-0
    52. Zambelis, A., Wolfe, T., & Vasseur, E. (2019). Technical note: Validation of an ear-tag accelerometer to identify feeding and activity behaviors of tiestall-housed dairy cattle. Journal of Dairy Science, 102(12), 10764–10771. https://doi.org/10.3168/jds.2018-15766
    53. Zehner, N., Umstätter, C., Niederhauser, J. J., & Schick, M. (2017). System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Computers and Electronics in Agriculture, 143, 206–215. https://doi.org/10.1016/j.compag.2017.02.021

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 The Authors

How to cite

Zahra, W. A., Rosmayanti, I., Yani, A., Sumantri, C., Oktarina, S. D., Gunawan, P., & Purwanto, B. P. (2025). Behavioral and thermoregulatory responses of dairy heifers under different roofing materials in a humid tropical climate. Journal of Animal Behaviour and Biometeorology, 13(3), 2025019. https://doi.org/10.31893/jabb.2025019
  • Article viewed - 190
  • PDF downloaded - 83